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1. Introduction

A crop model is the result of a long and complex construction process, involving data at
multiple stages for understanding basic processes, elaborating model structure, estimating
parameters and evaluating prediction quality. In various stages of a model’s life, however,
there is a need to study the model on its own, with an emphasis on its behaviour rather
than on its coherence with a given data set. This is where uncertainty analysis sensitivity
analysis and related methods become useful for the modeller or model user.

Uncertainty analysis consists of evaluating quantitatively the uncertainty or variability
in the model components (parameters, input variables, equations) for a given situation,
and deducing an uncertainty distribution for each output variable rather than a misleading
single value. An essential consequence is that it provides methods to assess, for instance,
the probability of a response to exceed some threshold. This makes uncertainty analysis
a key component of risk analysis (Vose, 1996).

The aim of sensitivity analysis is to determine how sensitive the output of a crop
model is, with respect to the elements of the model which are subject to uncertainty or
variability. This is useful as a guiding tool when the model is under development as well as
to understand model behaviour when it is used for prediction or for decision support. For
dynamic models, sensitivity analysis is closely related to the study of error propagation,
i.e. the influence that the lack of precision on model input will have on the output.

Because uncertainty and sensitivity analysis usually relies on simulations, they are
also closely related to the methods associated with computer experiments. A computer
experiment is a set of simulation runs designed in order to explore efficiently the model
responses when the input varies within given ranges (Sacks et al., 1989; Welch et al.,
1992). The goals in computer experiments identified by Koehler and Owen (1996) include
optimization of the model response, visualization of the model behaviour, approximation
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by a simpler model or estimation of the average, variance or probability of the response
to exceed some threshold.

Within a given model, model equations, parameters and input variables are all subject
to variability or uncertainty. First, choices have to be made on the model structure and on
the functional relationships between input variables and state and output variables. These
choices may sometimes be quite subjective and it is not always clear what their conse-
quences will be. Martinez et al. (2001) thus perform a sensitivity analysis to determine
the effects of the number of soil layers on the output of a land surface–atmosphere model.
For spatial models, there is frequently a need to evaluate how the scale chosen for input
variables affects the precision of the model output (see e.g. Salvador et al., 2001).

Second, parameter values result from estimation procedures or sometimes from biblio-
graphic reviews or expert opinion. Their precision is necessarily limited by the variability
and possible lack of adequacy of the available data. Some parameters may also naturally
vary from one situation to another. The uncertainty and natural variability of parameters
are the central point of many sensitivity analyses. Bärlund and Tattari (2001), for exam-
ple, study the influence of model parameters on the predictions of field-scale phosphorus
losses, in order to get better insight into the management model ICECREAM. Ruget et al.
(2002) perform sensitivity analysis on parameters of the crop simulation model STICS,
in order to determine the main parameters that need to be estimated precisely. Local sen-
sitivity methods, based on model derivatives with respect to parameters, are commonly
used for checking identifiability of model parameters (Brun et al., 2001).

Third, additional and major sources of variability in a model output are, of course,
the values of its input variables. Lack of precision when measuring or estimating input
variables needs to be quantified when making predictions from a model or when using it
for decision support. Aggarwal (1995) thus assesses the implications of uncertainties in
crop, soil and weather inputs in the spring wheat WTGROWS crop model. Rahn et al.
(2001) compare contrasted input scenarios for the HRI WELL-N model on crop fertilizer
requirements through a sensitivity analysis. They identify the main factors which need
to be measured precisely to provide robust recommendations on fertilization. Contrasted
settings of the input variables are used for performing sensitivity or uncertainty analyses
assuming different scenarios by Dubus and Brown (2002).

Model structure, model parameters and input variables represent three basic sources of
model uncertainty. It is often advisable to study their influence on a model simultaneously
(Saltelli et al., 2000) and alternative groupings of uncertainty sources may then be more
adequate. Rossing et al. (1994), for example, distinguish sources that can be controlled by
more intensive data collection (model parameter estimates), and uncontrollable sources
when predictions are made (daily temperature, white noise). Ruget et al. (2002), on the
other hand, decompose the sensitivity analyses according to STICS sub-modules on, e.g.
energy conversion, rooting or nitrogen absorption. Jansen et al. (1994) advocate to divide
uncertainty sources into groups of parameters or input variables which can be considered
to be mutually independent.

As shown by the examples above, uncertainty and sensitivity analysis may have various
objectives, such as:

• to check that the model output behaves as expected when the input varies;
• to identify which parameters have a small or a large influence on the output;
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• to identify which parameters need to be estimated more accurately;
• to detect and quantify interaction effects between parameters, between input variates

or between parameters and input variates;
• to determine possible simplification of the model;
• to identify input variables which need to be measured with maximum accuracy.

Some of these objectives have close links with other methods associated with
modelling, like model construction, parameter estimation or model use for decision
support.

The diversity of motivations for performing sensitivity analysis is associated with
a large choice of methods and techniques. In this chapter, we present a selection of
approaches representative of this diversity. This selection, however, will be far from
exhaustive. We refer to the book edited by Saltelli et al. (2000) for a recent and compre-
hensive exposition of sensitivity analysis methods and applications, and to Saltelli et al.
(2004) for a more practical presentation.

In this chapter, Section 2 is dedicated to preliminary notions on the basic components
of an uncertainty and sensitivity analysis. Section 3 covers several methods of uncer-
tainty analysis. Methods of sensitivity analysis are presented in Section 4 – local and
one-at-a time sensitivity analysis methods, and more global methods (variance-based sen-
sitivity analysis) which enable to study simultaneously the influence of several model
components.

2. Ingredients of uncertainty and sensitivity analysis

2.1. The crop model

The structure and properties of the crop model may influence the choice of the uncertainty
and sensitivity analysis. One reason is that the objectives depend on the crop model
capabilities and complexity.

More specifically, as remarked by Koehler and Owen (1996), the number of inputs
(variables or parameters), the number of outputs and the speed with which the model f

can be calculated may vary enormously in applications, and these quantities will obviously
play an important role in the objectives of a sensitivity analysis and on the adequacy of the
various available methods. Among the methods presented in the sequel, some are adapted
to small numbers of model simulations (e.g. local and one-at-a-time methods, meth-
ods based on experimental designs), while others require a large number of simulations
(methods based on Monte-Carlo sampling, for instance).

A price has to be paid while using more economical methods, and this price depends
on the main model properties – it may be necessary to select a number of factors smaller
than desired, or most interactions between factors may have to be assumed as negligible,
or the investigation may be unable to detect model departures from linearity or near-
linearity. It follows that some methods are well-adapted only if the model is well-behaved
in some sense, while other methods are more “model-independent” (Saltelli et al., 1999),
i.e. more robust to complex model behaviours such as strong non-linearity, discontinuities,
non-monotonicity or complex interactions between factors.
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2.2. Input factors

The model components whose influence on the output is to be investigated will be called
the input factors of the sensitivity analysis. An input factor may be:

• either a set of alternative model structures or functional relationships within a sub-
module of the model;

• or an uncertain or variable parameter θj ;

A winter wheat dry matter model

A simple crop model will be used in this chapter to illustrate the different methods of uncer-
tainty and sensitivity analysis. The model has a single state variable, the above-ground winter
wheat dry matter, denoted by U(t) with t the day number since sowing. This state variable
is calculated on a daily basis as a function of cumulative degree-days T (t) (above a baseline
of 0◦C) and of daily photosynthetically active radiation PAR(t). The model equation is:

U(t + 1) = U(t) + EbEi max

[
1 − e−K.LAI(t)

]
PAR(t) + ε(t),

where Eb the radiation use efficiency, Eimax the maximal value of the ratio of intercepted to
incident radiation, K the coefficient of extinction, LAI(t) is the leaf area index on day t , and
ε(t) is a random term representing the model error. In this chapter, we consider the deter-
ministic part of the model only, so this model error will be assumed null in the simulations.
LAI(t) is calculated as a function of cumulative degree-days T (t), as follows (Baret, 1986):

LAI(t) = Lmax

{
1

1 + e−A[T (t)−T1] − eB[T (t)−T2])
}

.

The dry matter at sowing (t = 1) is set equal to zero: U(1) = 0. In addition, the constraint
T2 = 1

B
log[1 + exp(A × T1)] is applied, so that LAI(1) = 0.

We will assume that the dry matter at harvest U(tH) is the main output variable of interest,
and denote

Ŷ = U(tH)

=
tH −1∑
t=1

EbEimax

[
1 − e−KLAI(t)

]
PAR(t)

While presenting sensitivity analysis, it is convenient to consider the model in the form

Ŷ = f (X; θ).

In this expression, X = (T (1), . . . , T (tH ), PAR(1), . . . , PAR(tH )) denotes the daily climate
input variables, and θ = (Eb, Ei max, K, Lmax, A, B, T1) denotes the vector of parameters,
with Lmax the maximal value of LAI, T1 a temperature threshold and A and B two additional
parameters.
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• or an input variable Xl ;
• or a series of several related input variables Xl , e.g. annual series of daily climate

variables in a given region.

The choice of the input factors depends on the objective of the sensitivity analysis.
They must include, of course, the model components of direct interest in the study. But
in many cases, the sensitivity of the model with respect to these components is likely
to depend on additional components. For instance, the sensitivity of a crop model with
respect to its main parameters is often highly dependent on the values of climate- or soil
variables. Consequently, these variables must also be considered for inclusion in the list
of input factors, unless, alternatively, separate sensitivity analyses are performed with
different modalities of these variables.

Note that each input variable of the model may or may not be selected as an input
factor of the sensitivity analysis. For instance, if a sensitivity analysis is performed for a
given soil type, the input variables related to soil can be fixed. In this case, the soil input
variables will not be included among the input factors of the sensitivity analysis. The term
input factor is further reserved for factors of the sensitivity analysis.

Notation

The number of input factors will be denoted by s and the input factors will be denoted
by Z1, . . . , Zs , in order to distinguish them clearly from the model input variables Xl .
An input scenario will be defined as a combination of levels z = (z1, . . . , zs) of the
sensitivity input factors. When several input scenarios need to be defined simultaneously,
they will be denoted by zk = (zk,1, . . . , zk,s), with subscript k identifying the scenarios.

Whatever the choice of the factors, it is assumed that for each input scenario z, the other
crop model components f , x and θ are completely determined so that the output f (x, θ)

can be calculated. We will keep the same notation f to identify the model expressed
as a function of input variables f (x, θ) or as a function of an input scenario f (z) =
f (z1, . . . , zs).

A winter wheat dry matter model (continued)

In the winter wheat dry matter model, the seven parameters have associated uncertainty and
so they represent seven input factors for the uncertainty and sensitivity analyses. The other
source of uncertainty to be considered in this example is that related to the input variables
of the model. Instead of considering each input variable PAR(t) and T (t) at each time t as
a separate sensitivity input factor, a set of fourteen annual series of climate measurements
in the region of interest will constitute the eighth factor of the sensitivity analysis.
Thus, there are eight factors: the seven parameters Eb, Eimax, K, Lmax, A, B, T1 and the
climate factor C. An input scenario is a vector

z = (zEb , zEimax , zK, zLmax , zA, zB, zT1 , zC)

specifying a combination of values of the input parameters. As this example shows, a factor
may be quantitative – the seven parameters – or categorical – the climate series.
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2.3. Uncertainty in input factors

For each input factor, the amount of uncertainty needs to be defined. The uncertainty in
an input factor can be described in different ways. For a parameter, it is often given as the
most likely value plus or minus a given percentage. Or it is specified through a continuous
probability distribution over a range of possible values. The uncertainty about climate can
either be summarized by series of climatic variable values measured during 10, 20 or
30 years, or be simulated by a climate generator (Richardson, 1981; Racsko et al., 1991).

In this chapter, three main characteristics are considered for describing the uncertainty:
nominal values, uncertainty domains and probability distributions.

The nominal value z0,i of an input factor Zi represents the most standard setting of the
corresponding model parameter or input variable in the conditions of the study. The control
scenario z0 is defined as the input scenario with each input factor fixed at its nominal
value. These notions are useful, in particular, for local sensitivity methods (see Section 4).

The uncertainty range represents the set of possible values for an input factor. Usually,

• for a parameter θj , it is an interval [θmin(j), θmax(j)] around the nominal value, rep-
resenting the uncertainty range of the parameter values based on bibliography, expert
opinion or experimental data;

• for a quantitative input variable Xl , it represents the range of variation [xmin(l), xmax(l)]
under the conditions of the study; alternatively, it can be chosen to reflect the lack of
precision when this variable is measured in a given field;

• for categorical factors, it is a set of modalities representative of the phenomenon under
study; for climate series, typically, the domain of variation is a set of recently observed
annual series in one or several sites.

Except for input factors with a negligible influence on model output, the influence of any
given input factor will appear stronger if its uncertainty range is enlarged compared to
other factors. Consequently, the uncertainty ranges must be tuned as finely as possible to
the objectives and scales of the study.

Probability distributions must be specified for the methods of sensitivity analysis based
on random sampling. The uniform distribution, which gives equal weight to each value
within the uncertainty range, is commonly used in sensitivity analysis when the main
objective is to understand model behaviour. In uncertainty analysis, more flexible proba-
bility distributions are usually needed to represent the input uncertainty (see Section 3).
Practical methods to determine distributions from data or expert opinion are presented in
Chapters 7 and 8 of Vose (1996).

Coding of input factors. It often simplifies presentation and calculation, when a common
uncertainty range is used for all quantitative sensitivity factors. This may be done by coding
the levels of the factors so that they vary between −1 and +1 or between 0 and 1. Coded
values zc

i of an input factor Zi can easily be calculated from the uncoded values through
the following relationship:

zc
i = zi − (zmin(i) + zmax(i))/2

(zmax(i) − zmin(i))/2
for a [−1, +1] range of variation,
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or

zc
i = zi − zmin(i)

zmax(i) − zmin(i)

for a [0, 1] range of variation.

A winter wheat dry matter model (continued)

The chosen nominal values and uncertainty ranges are given in Table 1 for the parameters.
These values come from past experiments, bibliography and expert knowledge. For the
climate factor, a set of 14 annual series observed in the region of Grignon (France) was
chosen. Note that for such a factor, there is no obvious nominal value.

Table 1. Uncertainty intervals for the parameters of the winter wheat
dry matter models.

Parameter Unit Nominal value Uncertainty range

Eb g/MJ 1.85 0.9 2.8
Eimax – 0.94 0.9 0.99
K – 0.7 0.6 0.8
Lmax – 7.5 3 12
T1 C 900 700 1100
A – 0.0065 0.003 0.01
B – 0.00205 0.0011 0.003

To illustrate the coding of factors, let us consider the parameter Eb. The values zc
Eb of Eb

vary in the uncertainty range [0.9, 2.8]. By setting zc
Eb = (zEb − 1.85)/0.95, we get coded

values zc
Eb which vary in [−1, +1].

2.4. Methods of uncertainty and sensitivity analysis

An uncertainty analysis can be used to answer the question What is the uncertainty in
Ŷ = f (Z) given the uncertainty in Z? This type of analysis consists of four steps:

i. Definition of the distribution of the uncertain input factors.
ii. Generation of N scenarios of the input factors zk = (zk,1, . . . , zk,s), k = 1, . . . , N .

iii. Computation of the model output for each scenario, f (zk), k = 1, . . . , N .
iv. Analysis of the output distributions (computation of means, variances, quantiles . . .).

These steps are discussed in details in Section 3.
Two types of sensitivity analysis are usually distinguished, local sensitivity analysis

and global sensitivity analysis. Local SA focus on the local impact of the factors on the
model outputs and is carried out by computing partial derivatives of the output variables
with respect to the input factors. With this kind of methods, the factors are allowed to
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vary within small intervals around nominal values. These intervals are not related to the
uncertainty in the factor values.

Global sensitivity analysis can be used to answer the question How important are the
individual elements of Z with respect to the uncertainty in Ŷ = f (Z)? Like uncertainty
analysis, global SA consists in (i) defining the distributions of the input factors, (ii) gen-
erating scenarios of input factors and (iii) computing output variables for each scenario.
But the fourth step is different and consists of calculating a sensitivity index for each ele-
ment of Z. These indices are computed varying the factors over their whole uncertainty
ranges. Methods of global sensitivity analysis are very useful because they allow the crop
modeller to identify the factors that deserve an accurate measure or estimation. Most of
Section 4 is devoted to these methods.

3. Uncertainty analysis

3.1. Probability distributions for input factors

The first step of an uncertainty analysis is to define the probability distributions for the
input factors. When performing an uncertainty analysis, attention must be paid choosing
in adequate probability distributions. The range of input values usually has more influence
on the output than the distribution shapes, but some characteristics such as the degree of
symmetry or skewness may also play a role.

There is a large choice of probability distributions available. In this section, we give
a brief overview and refer to Vose (1996) for a more detailed presentation. The uniform
distribution puts equal weight on each value in the uncertainty range. In most cases,
however, the extreme values of the uncertainty ranges are less likely than the middle
values. Among symmetric distributions, the well-known Gaussian distribution is often
convenient since it requires only the specification of a mean value and a standard deviation.
In uncertainty analysis, it is often replaced by the truncated Gaussian distribution or by
symmetric beta distributions, which give upper- and lower bounds to the possible values.

Sometimes the distribution should be asymmetric, for example if the input parame-
ter or variable is positive and likely to be near zero. Then log-normal, gamma or beta
distributions offer a large range of possibilities.

Finally the triangular distributions (or more general piecewise-linear distributions) are
often convenient for a simple representation of subjective beliefs, because they are defined
entirely by their uncertainty range and their most-likely value. The distribution is zero
outside the uncertainty range, it is maximum at the most-likely value, and it is linear
between the extreme values of the range and the most-likely value.

3.2. Generation of input factor values

Once the probability distributions have been specified, representative samples have to
be drawn from these distributions. This is done most often by Monte Carlo sampling.
In Monte Carlo sampling, the samples are drawn independently, and each sample is
generated by drawing independently the value of each sensitivity factor Zi . Note that
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many mathematical or statistical softwares include routines for quasi-random number
generation, so that Monte Carlo samples are quite easy to generate. Provided the quasi-
random generators are reliable, Monte Carlo sampling provides unbiased estimates of the
expectation and variance of each output variable.

Latin hypercube, importance and LPτ sampling (see Helton and Davis, 2000) are
alternatives to Monte Carlo sampling. The basic principle of Latin hypercube sampling is
briefly described here in the case of uniform distributions. First, the range of each factor is
divided into P intervals of equal probability and one value is selected at random from each
interval. Second, the P values obtained for the factor Z1 are paired at random and without
replacement with the P values obtained for the factor Z2. The P pairs are then randomly
combined without replacement with the P values obtained for the factor Z3 and so on.
The interest of Latin hypercube sampling is that it ensures the full coverage of the range
of variation of each factor. A drawback of this method is that it gives biased estimates of
the variance. According to Helton and Davis (2000), Latin hypercube sampling is useful
when large samples are not computationally practicable and the estimation of very high
quantiles is not required.

For illustration, we generated two samples of 10 values of a pair of independent and
uniformly distributed random variables, Z1 ∼ U(0, 1) and Z2 ∼ U(0, 1). One sample
was generated by Monte Carlo sampling (Fig. 1a) and the other one by Latin hypercube
sampling (Fig. 1b). The results show that the values generated by Latin hypercube sam-
pling cover the whole ranges of variation of the random variables. This is not necessarily
the case when a Monte Carlo method is used as shown in Figure 1a.

It is necessary sometimes to consider correlations between some input parameters or
variables. This requires generating samples from joint multivariate probability distribu-
tions. When the distributions are normal, the following method can be used. Assume that
the vector Z = (Z1, . . . , Zs)

T is distributed as Z ∼ N(0, �), where � is a (s × s)
variance–covariance matrix. Define U as an upper triangular matrix such as �−1 = UT U

(Cholesky decomposition). The vector UZ is normally distributed with mean equal to
zero and with a variance–covariance matrix equal to the identity matrix: var(UZ) =
UU−1(UT )−1UT = I . A random value z of Z is obtained by generating a vector d

including s values randomly generated from N(0, 1) and then by calculating U−1d.
When the input factors are not normally distributed, the method proposed by Iman

and Conover (1982) can be used to generate samples from joint multivariate probability
distributions. Taking account of correlations is particularly important for series of climatic
variables. As mentioned before, this case can be tackled by using past climatic series or
climate generators.

3.3. Computation of the model output for each scenario

Once the sample of factor values, z1, . . . , zN , have been generated, the corresponding
model output values, f (z1), . . . , f (zN), must be computed. If the computation of the
model output requires a lot of time, this step may be difficult to carry out. With some
very complex models, the sample size N must be set equal to a small value due to the
computation time. This problem is illustrated in Chapter 16. On the contrary, this step is
straightforward for models that are less complex and computationally intensive as shown
by Makowski et al. (2004) with the AZODYN model.
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Figure 1. Samples of 10 values of two independent random variables. Z1 ∼ U(0, 1) and
Z2 ∼ U(0, 1) obtained by Monte-Carlo sampling (a) and by latin hypercube sampling (b).
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3.4. Analysis of the output distribution

The last step of the analysis is to summarize the values of f (z1), . . . , f (zN). Different
quantities can be easily calculated. For example, when f (Z) is a single output variable,
estimates of the expected value and variance of f (Z) are given by f̄ = ∑N

k=1 f (zk)/N

and 1/(N − 1)
∑N

j=1

[
f (zj ) − f̄

]2
respectively. It is also useful to estimate the quan-

tiles associated to the distribution and the probabilities that f (Z) is lower than some
thresholds. Lacroix et al. (2005) used this method to study the risk of pollution of
water by nitrate from crop model simulations. The probabilities are often plotted as a
function of the threshold values and the resulting curve is called cumulative probability
distribution.

The quantile q, defined by P [f (Z) < q] = α, can be estimated as follows. The first
step is to order the output values. The ordered values are noted f (z(1)), . . . , f (z(i)), . . . ,

f (z(N)). The second step is to determine the value i such as (i − 2)/(N − 1) ≤ α <

(i − 1)/(N − 1). The quantile is then defined by q̂ = s × f (z(i−1)) + (1 − s)f (z(i))

where s = i − 1 + (1 − N)α.
A histogram representation of the output variable values can also provide interesting

information as shown in the following example.

A winter wheat dry matter model (continued)

The winter wheat dry matter model was used to compare uncertainty analyses with the
uniform distribution and with a symmetric bell-shaped distribution. For sake of simplicity,
we considered the Beta distribution with both shape parameters equal to 5, denoted by
Beta(5,5). This distribution is symmetric and bounded between 0 and 1, and it puts more
weight on the middle values of the [0, 1] interval (see Fig. 2). By applying the transformation
z = zmin(i) + B × (zmax(i) − zmin(i)) where B follows a Beta(5,5) distribution, it yields a
similar distribution over the uncertainty range of Zi .
In the second stage of the uncertainty analyses, N = 5000 scenarios were generated, using
the generators of quasi-random numbers implemented in the R software (www.r-project.org)
for uniform or Beta distributions. For each scenario, the climatic year was chosen at random
with equi-probability. The values of the seven parameters were generated one after another,
assuming independence between factors.
In the third stage, the biomass at harvest was calculated with the model for each simulated
scenario.
The fourth stage here included a histogram representation of the output and the calculation
of basic statistics. The histograms of the model responses are shown in Figure 2. When input
data was generated assuming a uniform distribution, combinations of parameter values very
unlikely in practice appeared quite frequently, giving extreme output values. By contrast, the
Beta(5,5) distribution made samples with extreme values of several factors very rare and the
output distribution was much less flat. Some statistics on the simulated output distributions
are given in Table 2.
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Figure 2. Density functions of the standard uniform (a) and Beta(5, 5) distributions (b).
Histograms of the winter wheat model output (biomass at harvest) from samples of size
5000, generated assuming the uniform (c) or Beta(5, 5) (d) distributions.

Table 2. Some statistics on the biomass distributions (g/m2) resulting from the uncertainty
analyses.

Sampling Minimum 1st Quartile Median 3rd Quartile Maximum

Uniform 0 1119 1636 2257 3785
Beta(5,5) 134 1665 1955 2233 3305

Mean Standard
deviation

Uniform 1669 785
Beta(5,5) 1946 420
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4. Sensitivity analysis

4.1. Overview of the different methods

There are many different ways to define sensitivity of a model with respect to its
inputs. This section presents the main approaches, without detailing precise criteria.
The sensitivity with respect to a single input factor is first considered, then the sensitivities
with respect to several factors.

4.1.1. One input factor

Figure 3 illustrates the basic approaches to measure sensitivity from the relationship
between a single input factor Z and a model output Ŷ = f (Z).

Local sensitivity analysis is based on the local derivatives of output Ŷ with respect to
Z, which indicate how fast the output increases or decreases locally around given val-
ues of Z. The derivatives can sometimes be calculated analytically, but they are usually
calculated numerically for complex models. Problems may arise if the derivative of the
model does not exist at some points. In addition, the derivatives may depend strongly
on the Z-value. This problem is illustrated in Figure 3a where three derivatives are
reported.

Figure 3. Bases for defining sensitivity criteria of model output Ŷ with respect to input factor Z.
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The local (first-order) sensitivity coefficient Slocal
i (zk) is defined as the partial derivative

of the output variable Ŷ with respect to factor Zi , calculated at the scenario zk:

Slocal
i (zk) = ∂f (Z)

∂Zi

∣∣∣∣
zk

This criterion is equivalent to the slope of the calculated model output in the parameter
space. The Slocal

i (zk) criterion is an absolute measure of sensitivity, which depends on
the scales or measurement units of Ŷ or Zi . A standardized version, called the relative
sensitivity, is defined by:

Slocal
i (zk) = ∂f (Z)

∂Zi

∣∣∣∣
zk

× zk,i

f (zk)

Local sensitivity analysis can be used to study the role of some parameters or input
variables in the model. But this method is less useful than global sensitivity analysis when
the purpose of the analysis is to study the effect of uncertainty of several factors on model
outputs. A more detailed description of local sensitivity analysis is given by Turányi and
Rabitz (2000).

A winter wheat dry matter model (continued)

For illustration, the local sensitivity coefficient for parameter Eb is defined by

Slocal.r
Eb (z) =

tH −1∑
t=1

zEimax

[
1 − e−zKzLAI(t)

]
zPAR(t).

In global sensitivity analysis (Fig. 3b,c,d), on the other hand, the output variability is
evaluated when the input factors vary in their whole uncertainty domains. This provides
a more realistic view of the model behaviour when used in practice. There are several
methods to perform global sensitivity analyses and the whole Section 4.2 is concerned
with their description, while the book edited by Saltelli et al. (2000) is a comprehensive
reference.

The global degree of association between Z and Ŷ over the interval [zmin, zmax] can
first be measured through a model approximation. For instance, if the crop model is
approximated by a linear relationship between Z and Ŷ (Fig. 3c), sensitivity can be
measured by the squared regression coefficient or by the linear correlation between Z

and Ŷ . This approach is described in Section 4.2.3. It is a simple and often efficient way
to measure sensitivity, provided the model approximation is adequate.

The approaches illustrated in Figures 3b and d are different since they do not rely on a
model approximation, in principle at least. They are called model-independent in the sense
of Saltelli et al. (1999), because they measure variation of Ŷ independently of how this
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variation is distributed along the Z-axis. The sensitivity criterion illustrated in Figure 3b
is simply based on the range of the model output when Z runs within [zmin, zmax] and
it will be briefly discussed in Section 4.2.1 on one-at-a-time methods. In the approach
illustrated in Figure 3d, sensitivity is measured by the variance of Ŷ over [zmin, zmax].
This approach will be described in Sections 4.2.2, 4.2.4 and 4.2.5.

4.1.2. Several input factors

Figure 4 presents an interaction plot between two input factors Z1 and Z2: in this plot,
the relationship between input Z1 and output Ŷ is represented for several distinct values
of Z2. The numerical values shown in Figure 4 are also presented in Table 3. If the effects
of Z1 and Z2 on Ŷ were additive, then the curves would be parallel. On the contrary,
Figure 4 shows that there are strong interaction effects on Ŷ between factors Z1 and Z2.
The interaction plot shows clearly that, in case of an interaction between Z1 and Z2, the
sensitivity of Ŷ to Z1 depends on the value of Z2 and vice-versa. This situation occurs with
most crop models, because crop models are not simply additive functions of parameters
and input variables.

It is common practice to measure sensitivity for each input factor Zi separately, with all
other factors fixed at their single nominal values. However, this prevents interactions from
being detected and quantified, whereas taking interactions into account is a key aspect
of most global sensitivity methods. We discuss below the interest of several criteria with
respect to their ability to take into account interactions between factors.

Consider for instance, the variance criterion var(Ŷ ) illustrated in Figure 3d, and suppose
now that there are several input factors. Let us denote by var(Ŷ |Zj = zj , j �= i) the

Figure 4. Two-factor interactions graphics: the output Ŷ is represented as a function of the input
factor Z1, for three distinct values of Z2.
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Table 3. Output values Ŷ for two interacting factors Z1 and Z2 and calculation of variance-based
criteria for the first factor.

Z1 Z2 Ŷ E(Ŷ |Z1 ) var(Ŷ |Z1 ) var[E(Ŷ |Z1 )] E[var(Ŷ |Z1 )]
1 1 3
1 2 9 9 24
1 3 15

2 1 5
2 2 7 7 8/3 26/3 ≈ 8.67 142/9 ≈ 15.78
2 3 9

3 1 4
3 2 2 2 8/3
3 3 0

variance of Ŷ when zi varies within its uncertainty domain and all other factors Zj are
fixed at given values zj . Clearly, this variance gives information on the sensitivity of Ŷ

with respect to Zi .
In a strict one-at-a-time approach, the criterion var(Ŷ |Zj = zj , j �= i) is calculated

at the nominal values z0,j only: it is equal to var(Ŷ |Zj = z0,j , j �= i). If there are
interactions between factors, however, then var(Ŷ |Zj = zj , j �= i) depends on the zj

values and a more synthetic sensitivity criterion is preferable.
One possibility consists in using the variance of Ŷ averaged over the zj s, rather

than calculated at specific values z0,j . Thus var(Ŷ |Zj = z0,j , j �= i) is replaced by
var[E(Ŷ |Zi = zi)], where E(Ŷ |Zi = zi) denotes the expected (or average) model output
when factor Zi takes a given value zi and the other factors vary within their uncer-
tainty domains. The variance calculated in this way was called the top marginal variance
by Jansen et al. (1994). It corresponds to the main-effect in an analysis of variance
or to the first-order index in some sensitivity analysis methods. When this is applied
to the example of Figure 4 (see Table 3), the first-order sensitivity to Z1 is equal to
26/3 ≈ 8.67.

A second possibility consists in considering the expected value of var(Ŷ |Zj = zj ,

j �= i) over all possible values of the zj s, for j �= i, E[var(Ŷ |Zj = zj , j �= i)]. The
variance calculated in this way was called the bottom marginal variance by Jansen et al.
(1994). By analogy to definitions given in Saltelli et al. (2001), we call such criteria total
sensitivity criteria. When this is applied to the example of Figure 4 (see Table 3), the total
sensitivity to Z1 is equal to 142/9 ≈ 15.78.

The total sensitivity of Ŷ to Zi can be interpreted as the expected remaining uncertainty
in Ŷ if all other input factors were determined exactly. In the example, the total sensitivities
of both factors are larger than their main-effect sensitivities. This is a general property, and
this difference between the total and main-effect sensitivities is entirely due to interactions
between the factors.
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Thus, total sensitivity gives a comprehensive measure of the influence of an input factor.
This measure can be decomposed into main-effects and interactions, and this decompo-
sition usually gives more insight on the model behaviour. As a conclusion, both types
of criteria are useful and complementary. They will be illustrated, with the winter wheat
model, in the sections on design of experiments and on sampling-based and variance-based
methods.

4.2. Methods of global sensitivity analysis

4.2.1. One-at-a time methods

The most intuitive method to conduct a sensitivity analysis is to vary one factor at a
time, while the other factors are fixed at their nominal values. The relationship between
the values zi of factor Zi and the responses f (z0,1 . . . z0,i−1, zi, z0,i+1, . . . z0,s) deter-
mines a one-at-a-time response profile. Drawing response profiles is often useful, at least
in preliminary stages. However, we have already argued that more global methods are
preferable, because they take account of and quantify interactions between input factors.

In practice, each input factor Zi takes k equispaced values from zmin,i to
zmax,i , with increments δ = (zmax,i − zmin,i )/(k − 1). The model responses
f (z0,1, . . . z0,i−1zi, z0,i+1 . . . z0,s) are then calculated for the k discretized values zi .
Figure 5 represents the simulated scenarios when this procedure is applied to three input
factors.

If the number of sensitivity factors is not too large, graphical representations are the
best way to summarize the response profiles. Alternatively, summary quantities may be
calculated for each factor’s profile, and compared between factors. Bauer and Hamby
(1991), for instance, proposed using the following index

IBH
i = maxzi

f (z0,1 . . . z0,i−1,zi,z0,i+1 . . .z0,s)−minzi
f (z0,1 . . .z0,i−1,zi,z0,i+1 . . .z0,s)

maxzi
f (z0,1 . . .z0,i−1,zi,z0,i+1 . . .z0,s)

This index can be approximated by the difference between the maximum and minimum
simulated values.

The number k of values per profile must be chosen carefully when the model is non-
linear and particularly when it is non-monotonic. Provided k is odd, the number of model
simulations to calculate all profiles is equal to s(k − 1) + 1. When k is small and the

Figure 5. Sampled points when three factors are studied through one-at-a-time sensitivity profiles.
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model is non-linear, non-linear effects, as well as maxima or minima, may be undetected,
which may lead to under-estimating sensitivity indices such as the index of Bauer and
Hamby (1991). When k is large, the computing time may become too large if there are
many input factors and the model is complex. In that case, it is more efficient to reserve
computing time to more global methods of sensitivity analysis.

A winter wheat dry matter model (continued)

For the winter wheat dry matter model, no highly non-linear phenomena was expected, so
that a small number of discretized values was considered sufficient. Besides, between-year
variability was expected to have an influence on sensitivity. Consequently, one-at-a-time
profiles were calculated with respect to each parameter and for each annual climate series.

The average profiles and their ranges over the climate series are represented in Figure 6.
The results show that parameters Eb, A and B have a stronger influence on the simulated
biomass value than the other parameters. They show that between-year variability depends
on the values of the input factors. However, they give no information on the interactions
between parameters.

Figure 6. One-at-a-time profiles for the winter wheat dry matter at harvest simulated by the
model over 14 climatic series. Points indicate the average simulated values over the climatic
series and vertical bars indicate the ranges of variation.
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In its most restricted application, one-at-a-time sensitivity analysis is applied at
the nominal values of the sensitivity factors only. In that case, it gives information
on the model only in a small neighbourhood of the nominal values. However, more
global sensitivity analyses may be obtained by calculating one-at-a-time local sensi-
tivity criteria for a lot of different input scenarios. This idea is exploited by Morris
(1991). Morris defines the elementary effect of the ith factor for a given scenario
z0 = (z0,1, . . . , z0,s) as

di(z0)= f (z0,1 . . .z0,i−1,z0,i +�,z0,i+1 . . .z0,s)−f (z0,1 . . .z0,i−1,z0,i ,z0,i+1 . . .z0,s)

�

where z0,i +� is a perturbed value of z0,i . The principle of Morris’ method is to sample a
series of scenarios z0 = (z0,1, . . . , z0,s) in the s-dimensional space defined by the values
[zmin(i), zmin(i) + δ, zmin(i) + 2δ, . . . , zmax(i)], i = 1, . . . , s and to calculate di(z0) for
each sampled value. The resulting distribution of the elementary effects of the ith factor
is then characterized by its mean and variance. A high mean indicates a factor with an
important influence on the output. A high variance indicates either a factor interacting
with another factor or a factor whose effect is non-linear.

4.2.2. Factorial design and analysis of variance

The sensitivity analysis of a crop model is similar to an experiment where nature is being
replaced by the simulated crop model. It follows that the classical theory of experimental
design provides very useful tools for sensitivity analysis. In particular, factorial designs
make it possible to evaluate simultaneously the influence of many factors, with possibly
a very limited number of runs. An additional practical advantage is that the methods of
analysis are available in general statistical packages.

Despite the analogy between natural experiments and sensitivity analyses, some dif-
ferences must be pointed out. First, there is nothing like measurement error in simulated
experiments, at least when the model is deterministic. As a consequence, there is no
residual variance and it is unnecessary to replicate the same scenarios and introduce
blocking, whereas replication and blocking are the key components of designed experi-
ments. The second difference is that the number of runs may quite often be much larger
in simulation studies than in real experiments.

Many books are dedicated to the design of experiments. A very good reference on
factorial designs and response surface methods is Box and Draper (1987).

4.2.2.1. Complete factorial designs
With s input factors and m modalities per factor, there are ms distinct input scenarios.
The (unreplicated) complete ms factorial design consists of running simulations for each
of these scenarios exactly once.

The common point between the complete factorial design and the one-at-a-time profiles
is that each factor is studied at a restricted number of levels. However, the major difference
is that the emphasis in factorial designs is on making all factors vary simultaneously. This
implies that the global “input space” of the model is much better investigated, as can be
seen by comparing Figure 7 with Figure 5.
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Figure 7. Sampled points when three factors are studied through a complete factorial design with
two modalities per factor (large dots) or three modalities per factor (small and large dots).

Table 4. Number of runs for complete ms factorial designs.

s m = 2 m = 3 m = 4 m = 5

5 32 243 1024 3125
10 1024 59049 1048576 9765625
20 1.05e + 06 3.49e + 09 1.10e + 12 9.54e + 13

A less favourable consequence is that the complete factorial design requires many runs
when the number of factors under study is large, as Table 4 shows. For this reason, the 2s

and 3s factorial designs are the most frequently used complete factorial designs when the
number of factors is large. These designs are very useful to quantify interactions between
factors.

Factorial decomposition of the model response The analysis of variance (ANOVA) is
based on the decomposition of the response variability between contributions from each
factor and from interactions between factors. This decomposition is related to the statistical
theory of the linear model.

Consider a model with two input factors Z1 and Z2, and let Ŷab = f (a, b) denote
the model response when z1 = a and z2 = b. In a complete m2 factorial design, there
are m possible values for a and m possible values for b and so there are m2 distinct Ŷab

values. Let Ŷ•• denote their general mean, Ŷa• denote the mean when z1 = a, and Ŷ•b

the mean when z2 = b. Then, when restricted to the m2 design scenarios, the model can
be decomposed into

Ŷab = µ + αa + βb + γab, (1)

where µ is the general mean, αa = Ŷa• − µ is called the main effect of factor Z1 when
z1 = a, βb = Ŷ•b − µ is the main effect of factor Z2 when z2 = b, and γab =
Ŷab − (µ + αa + βb) is the interaction between Z1 and Z2 when z1 = a and z2 = b. The
factorial effects satisfy the properties

∑
a αa = 0,

∑
b βb = 0, and

∑
a γab = ∑

b γab = 0.
The number of free ANOVA parameters (αa, βb, γab) associated with each factorial term
is called its “degrees of freedom” number. There are (m − 1) degrees of freedom for the
main effects of Z1 and Z2 and (m − 1)2 degrees of freedom for their interaction.
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The response variability can be decomposed into factorial terms as follows:

∑
ab

(Ŷab − µ)2

︸ ︷︷ ︸
SST

= m
∑
a

α2
a

︸ ︷︷ ︸
SS1

+ m
∑

b

β2
b

︸ ︷︷ ︸
SS2

+
∑
a,b

γ 2
ab

︸ ︷︷ ︸
SS12

, (2)

where SST measures the total variability in the model responses, SS1 is the sum of squares
associated with the main effect of Z1, SS2 is the sum of squares associated with the main
effect of Z2, and SS12 is the sum of squares associated with the interaction between Z1
and Z2.

With s factors at m levels, the complete ANOVA decomposition is a sum of (2s − 1)

factorial terms:

SST =
∑

i

SSi +
∑
i<j

SSij + · · · + SS1...s , (3)

including main effects (SSi) and interactions between up to s factors (SS1...s). The number
of degrees of freedom for an interaction between q factors is equal to (m− 1)q . Note that
for a 2s factorial design, all factorial terms have just one degree of freedom.

ANOVA results and sensitivity indices For the sensitivity analysis of a deterministic
model, the main interest lies in comparing the contributions of the factorial terms to the
total variability, while formal testing of hypotheses has no real meaning since there is
no residual variability. It follows that the most useful information lies in the sums of
squares. By dividing the sums of squares by the total variability, the following “ANOVA”
sensitivity indices can be easily calculated:

• main effects sensitivity indices S1 = SS1
SST

, S2 = SS2
SST

;

• interaction sensitivity indices S12 = SS12
SST

;

• total sensitivity indices such as TS1 = SS1+SS12
SST

or TS2 = SS2+SS12
SST

, which summarize
all factorial terms related to a particular factor.

A winter wheat dry matter model (continued)

For the eight sensitivity factors of the “winter wheat dry matter model” example, a 28

complete factorial design would require the number of climatic series to be limited to two.
We applied instead a 27 × 14 complete factorial design, where the 14 climatic series were
crossed with the 27 scenarios based on the minimum and maximum values of the parameter
uncertainty ranges. There were thus a total of 1792 = 27 ×14 simulations of the crop model.
The analysis of variance on the simulation results can be performed assuming the complete
factorial model, including interactions between up to eight factors. In practice, simpler
models are often sufficient to capture the most interesting sensitivity features.
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For illustration, the results presented in Table 5 were calculated assuming a model with 8
main effects (7 parameters + climate) and interactions between two factors only. The sums
of squares in Table 5 are given by many statistical software packages, but not the sensitivity
column which was calculated by dividing the sum-of-squares column by the total variability
SST of the data. In this analysis, the quantities associated with the residuals correspond to
all terms which were not included in the model, that is here, interactions between three or
more factors. The coefficient of determination R2 of a model is, by definition, the percentage
of the total variability explained by the model. Here, it is equal to 0.94, indicating that only
6% of the variability in the simulated model output is accounted for by interactions between
more than three factors.
Sensitivities are represented graphically in Figures 8 (factorial indices) and 9 (total indices).
For these figures, the complete factorial model was used, but the differences with the model
with main effects and two-factor interactions were small. The most influential factors are
the parameters Eb, A and B, which confirms results of the one-at-a-time profiles (Figure 6).
The figures also show that the influence of interactions is high, which could not be detected
by the one-at-a-time profiles.

Table 5. Analysis of variance table of the complete factorial design
applied to the winter wheat dry matter model; the table was
calculated for the model including main effects and two-factor
interactions. Sensitivities smaller than 0.01 are not displayed.

SS Sensitivity index

Eb 777 593 320 0.33
Eimax 6686 674
K 3662 758
Lmax 80 732 881 0.03
A 520 104 586 0.22
B 309 742 948 0.13
T I 551 495
YEAR 7330 246
Eb:Eimax 1763 250
Eb:K 965 855
Eb:Lmax 21 288 948
Eb:A 137 149 566 0.06
Eb:B 81 678 016 0.04
Eb:T I 145 427
Eb:YEAR 1932 958
Eimax:K 8306
Eimax:Lmax 183 068
Eimax:A 1179 375
Eimax:B 702 365
Eimax:T I 1251
Eimax:YEAR 16 622
K:Lmax 823 631
K:A 82 704
K:B 635 271

continued
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Table 5.—Cont’d.

SS Sensitivity index

K:T I 395
K:YEAR 6643
Lmax:A 60 448
Lmax:B 17 116 469
Lmax:T I 35 467
Lmax:YEAR 145 584
A:B 193 147 537 0.08
A:T I 28 101 635 0.01
A:YEAR 2586 798
B:T I 1425 195
B:YEAR 1178 019
T I :YEAR 2471 694
Residuals 128 829 265

Figure 8. The eight largest factorial sensitivity indices based on the 2s × 14 factorial design
and its analysis of variance with a complete factorial model, for the winter wheat crop model;
the lower bars show cumulative indices.
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Figure 9. Main-effect (first part of the bars) and total (full bars) sensitivity indices based on
the 2s × 14 factorial design and its analysis of variance, for the winter wheat model.

4.2.2.2. Fractional factorial designs
When there is a large number of factors, the factorial main effects and low-order interac-
tions can usually be estimated quite accurately by running only a fraction of the complete
factorial design. When applied to sensitivity analysis, fractional factorial designs are
very useful for screening a large number of factors and for detecting the most influential
ones, with a relatively small number of runs. This requires, however, the assumption
that higher-order interactions are negligible. It also requires that the fraction be carefully
chosen. This can be done through algebraic methods of construction (see Box and Draper,
1987; Kobilinsky, 1997).

Consider, for example, the fractional design for seven factors at two modalities ±1
given in Table 6. This is a complete factorial design for factors A, B and C, which are
called the basic factors of the fraction. The modalities of the basic factors have been used
to calculate those of four additional factors D, E, F and G.

Consider first the design restricted to factors A, B, C and G. This is a half-fraction
of the 24 complete factorial design, with eight runs instead of 16. Because this is an
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Table 6. Complete 23 factorial design and fractional design defined by ABC = 1.

A B C D = AB E = AC F = BC G = ABC Y

−1 −1 −1 +1 +1 +1 −1 Y1
−1 −1 +1 +1 −1 −1 +1 Y2
−1 +1 −1 −1 +1 −1 +1 Y3
−1 +1 +1 −1 −1 +1 −1 Y4
+1 −1 −1 −1 −1 +1 +1 Y5
+1 −1 +1 −1 +1 −1 −1 Y6
+1 +1 −1 +1 −1 −1 −1 Y7
+1 +1 +1 +1 +1 +1 +1 Y8

incomplete factorial design, not all factorial terms can be estimated. However, there are
quite simple rules to determine which terms can be estimated. Thus, the relationship
G = ABC which was used for defining G implies that the main-effect of G is confounded
with the A:B:C interaction. The two effects cannot be estimated separately, but if A:B:C
is assumed to be negligible, then the main-effect of G can be estimated. By multiplying
both sides of the G = ABC equality with factor letters and by adopting the convention
that A2 = B2 = C2 = G2 = 1, other confounding rules can be obtained. For example,
multiplying by A yields AG = A2BC which gives AG = BC after simplification. This
implies that the interactions A:G and B:C are confounded. More generally, there is one
confounding relationship associated with each factorial effect between the basic factors.
Here, the confounding relationships are:

1 = ABCG

A = BCG

B = ACG

C = ABG

AB = CG

AC = BG

BC = AG

ABC = G,

where 1 indicates the general mean. The resolution of a fractional design is, by definition,
the minimum order among the interactions confounded with the general mean. Here,
there is only one fourth-order interaction confounded with the mean, so the fraction has
resolution IV (by convention, the resolution is often written with roman numbers). With a
fraction of resolution IV, the general mean is confounded with the four-factor interaction,
main effects are confounded with three-factor interactions, and two-factor interactions are
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mutually confounded. Assuming that three- and four-factor interactions are negligible, all
main effects can be estimated.

Consider now the design with the seven factors A to G. This is a 1/(24) fraction of the
complete factorial design, with 8 runs instead of 128! Now, instead of being confounded by
pairs, factorial effects are confounded by groups of size 16. For example, the confounding
relationships involving the general mean are

1 = ABD = ACE = BCF = ABCG = BCDE = ACDF = CDG = ABEF

= BEG = AFG = DEF = ADEG = BDFG = CEFG = ABCDEFG

and the confounding relationships involving the main effect of A are

A = BD = CE = ABCF = BCG = ABCDE = CDF = ACDG = BEF

= ABEG = FG = ADEF = DEG = ABDFG = ACEFG = BCDEFG.

This is a resolution III fractional design, and with such a design, the main effects are
confounded with interactions between two and more factors. Thus the main effects can
be estimated provided all interactions are considered negligible.

Both examples given above can be generalized to more factors and more modalities per
factors. With 2n simulations, it is possible to study up to 2n − 1 factors in a resolution III
fraction, and up to 2n−1 factors in a resolution IV design. Of course, higher resolutions
should be preferred when possible. The main difficulty is to find the most appropriate
confounding relationships when defining new factors from the basic ones. Tables are
given in Kobilinsky (1997). The PROC FACTEX procedure of the SAS QC module can
generate fractional designs automatically.

4.2.2.3. Other experimental designs
In a 2s complete or fractional factorial design, all information on each quantitative factor
Zi is based on the model behaviour at only two levels per factor. This is optimal when, for
any setting of the other factors, the model is a linear or near-linear function of zi . It often
remains efficient when the model is monotonous. However, 2s designs do not allow
one to detect and quantify non-linear relationships between a sensitivity factor and the
output.

In that case, it is necessary to consider designs with more levels per factor. One may
use 3s , 4s complete or fractional designs, which ensure that quadratic effects may be
detected as well as linear effects. Flexible fractional designs exist also for these designs,
in fact for all ms designs where m is a prime number or a power of a prime.

The response surface methodology (see Box and Draper, 1987) offers an alternative
approach to study the influence of quantitative factors on a response function. It is based
on an approximation of the crop model by a polynomial function of degree one or two of
the input factors, and on convenient designs to estimate their parameters. This approach
has been applied to the STICS crop model (Ruget et al., 2002) and we refer to this article
for a detailed presentation in the context of crop models.
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4.2.3. Intensive sampling and correlation criteria

In the sensitivity analysis methods presented in Section 4.2.2, the sampled modalities of
the input factors are precisely defined by the factorial design. Another approach consists in
randomly generating factor values by Monte Carlo sampling. The principle is to randomly
generate N scenarios of the input factors zk = (zk,1, . . . , zk,i , . . . , zk,s) k = 1, . . ., N , and
to compute the model output for each scenario, f (zk) k = 1, . . . , N , in a similar way to
what is done for an uncertainty analysis. The statistical methods related to regression (see
e.g. Venables and Ripley, 1999) are then used to represent and to measure the sensitivity of
the output variables with respect to the input factors. These methods are presented below.

Correlation coefficients can be used to quantify the relationships between input factors
and output variables. Let s2

Ŷ
= 1

N

∑N
k=1 [f (zk) − f̄ ]2 and s2

Zi
= 1

N

∑N
k=1 (zk,i − z̄i )

2

denote the empirical variances of Ŷ = f (Z) and Zi in the simulations, and let
côv(Ŷ , Zi) = 1

N

∑N
k=1 [f (zk) − f̄ ][zk,i − z̄i] denote their covariance. Then the PEAR

(Pearson Product Moment Correlation Coefficient) coefficient between Zi and Ŷ is
defined by

rZ
i,Ŷ

= côv(Ŷ , Zi)

s
Ŷ

sZi

.

It varies between −1 and +1 and it measures the degree of linear association between the
variations of Zi and those of Ŷ . Some non-linear associations may remain undetected and
underestimated by the PEAR coefficient. An alternative is the Spearman correlation coef-
ficient, which is calculated on the ranks of Zi and Y . The Spearman correlation coefficient
is more adequate in case of strongly non-linear, but still monotonous, relationships.

With the PEAR or Spearman coefficients, no account is taken of the possible effects of
input factors other than Zi . In contrast, the partial correlation coefficient (PCC) aims at
measuring the association between Zi and Ŷ after eliminating possible effects due to other
input factors Zj , j �= i. The PCC coefficient is similar to the PEAR correlation coefficient,
but it is calculated with f (zk) and zk,i replaced by the residuals of the following two
regression models

f (zk) = b0 +
∑
j �=i

bj zk,j + εk, zk,i = c0 +
∑
j �=i

cj zk,j + ε′
k,

where bj s and cj s are regression coefficients to be estimated.
Regression models give a general framework for studying the influence of all input

factors simultaneously. By approximating the crop model under study, they make it pos-
sible to evaluate the influence of each input factor. Consider for instance the regression
model with first-order effects only:

f (zk) = b0 +
s∑

i=1

bizk,i + ε′′
ik, (4)

where bi are the regression coefficients to be estimated and ε′′
ik is the approxima-

tion error term. The regression coefficients are estimated by least-squares. The quality
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of the adjustment is synthesized typically by calculating the model coefficient of
determination R2, that is, the percentage of output variability explained by the model.

The estimated regression coefficients b̂i can be considered as sensitivity measures
associated with the factors Zi , provided they are standardized with respect to the variability
in Ŷ and in Zi . The standardized regression coefficients (SRC) are defined as the quantities
b̂i (sZi

/s
Ŷ
).

Many more principles and techniques of regression are useful for sensitivity or uncer-
tainty analysis, but it is out of the scope of this chapter to present them all. However, a
few remarks can be made:

• the regression model in Eq. (4) can be extended in order to incorporate interactions
between input variables, qualitative as well as quantitative factors, quadratic as well as
linear effects. This is useful in particular if the regression coefficient of determination
is small;

• when the number of terms in the model is large, model selection techniques (stepwise
regression for instance) may become a precious aid to interpretation, since they can
eliminate factors with negligible influence;

• the regression techniques presented here are good essentially at capturing linear effects
between the Zis and the Y s. Alternative methods should be considered when non-linear
relationships are suspected;

• polynomial regression is one of the basic approaches in response surface methodol-
ogy. It can be used on randomly selected simulations as described here, but also on
simulations based on factorial or response surface design (Ruget et al., 2002).

A winter wheat dry matter model (continued)

N = 5000 scenarios were generated, using the generators of quasi-random numbers imple-
mented in the R software (www.r-project.org) for Uniform and Beta distributions. Figure 10
shows scatterplots of the model simulations. A scatterplot is a representation of the points[
zk,i , f (zk)

]
, where zk,i is the value of Zi in the k-th simulation and f (zk) is the simulated

response. In order to get a better visualisation, only 500 points have been represented in
the plots of Figure 10. Non-parametric smoothing lines, based on local regressions, have
been added to the plots in order to better visualize the relationship between f (zk) and zk,i .
Figure 10 reveals a negative correlation between biomass at harvest and parameter B, and a
positive correlation between the model output and parameters Eb and A.
PEAR and SRC coefficients for the parameters of the winter wheat dry matter model are
given in Table 7. They have been calculated with the linear model function of the statistical
package R, from the 5000 simulations. The results are very similar to those obtained with
analysis of variance, with Eb, A and B the most influential parameters. The difference
between the SRC and PEAR coefficients is small because the data set is large (5000 samples)
and so the input factors are nearly orthogonal (the maximum empirical correlation between
input factors is 0.037). There is a larger difference between the input sampling distributions,
with a stronger sensitivity to Eb when the beta distribution is used.
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The coefficient of determination of the model with only first-order effects (uniform case)
is R2 = 0.78. This shows that interactions account for more than 20% of the output
variability.

Figure 10. Scatter plots between the simulated values of biomass at harvest (g/m2) and each
input factor over its range of uncertainty, based on 500 simulations.

Table 7. PEAR and SRC coefficients for the winter wheat dry matter model, estimated from
5000 Monte Carlo samples.

Parameter Uniform sampling Beta sampling
PEAR SRC PEAR SRC

Eb 0.62 0.63 0.71 0.73
Eimax 0.10 0.06 0.04 0.06
K 0.04 0.03 0.04 0.03
Lmax 0.15 0.17 0.15 0.16
A 0.47 0.49 0.36 0.39
B −0.33 −0.34 −0.30 −0.32
T I 0.04 0.03 0.04 0.04

vijayasri
Text Box
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4.2.4. Intensive sampling and variance-based sensitivity analysis

4.2.4.1. Variance-based measures of sensitivity
In the approaches based on experimental design followed by analysis of variance or
on Monte Carlo sampling followed by regression, sensitivity analysis is based on an
approximation of the crop model by a simpler linear model. In the variance-based methods
described in this section, the principle is to decompose the output variability D = Var(Ŷ )

globally, without an intermediate simplified model.

Sobol decomposition of the model The methods are based on model and variance
decompositions that are very similar to those encountered in analysis of variance. To
emphasize the similarities and differences, we adopt a presentation which parallels that in
Section 4.2.2.

Consider two quantitative input factors Z1 and Z2, and let Ŷab denote the model
response when z1 = a and z2 = b. The Sobol decomposition of the crop model f (Sobol,
1993) is given by

Ŷab = µ + f1(a) + f2(b) + f12(a, b). (5)

This decomposition is quite similar to the decomposition in Eq. (1), but, in contrast to
Section 4.2.2, a and b are now assumed to vary continuously within the uncertainty
interval [0, 1]. It follows that the general mean of the crop model f is now defined by

µ =
∫ 1

0

∫ 1

0
f (z1, z2)dz1dz2.

The main effect of factor Z1 is defined by the function

f1(a) =
∫ 1

0
f (a, z2)dz2 − µ

of a. Similarly, the main effect of B is defined by

f2(b) =
∫ 1

0
f (z1, b)dz1 − µ.

Finally, the interaction between Z1 and Z2 is defined by

f12(a, b) = f (a, b) − f1(a) − f2(b) + µ.

The factorial effects thus defined satisfy orthogonality properties which make the
decomposition unique and give it a lot of nice properties. In particular, these properties
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yield an orthogonal decomposition of the response variability into factorial terms:

∫ 1

0

∫ 1

0
(Ŷz1z2 − µ)2dz1dz2

︸ ︷︷ ︸
Var(Ŷ )

=
∫ 1

0
f1(a)2da

︸ ︷︷ ︸
D1

+
∫ 1

0
f2(b)2db

︸ ︷︷ ︸
D2

+
∫ 1

0

∫ 1

0
f12(a, b)2dadb

︸ ︷︷ ︸
D12

, (6)

where D1 is the variability associated with the main effect of Z1, D2 is the variabil-
ity associated with the main effect of Z2 and D12 is the variability associated with the
interaction between Z1 and Z2.

With s quantitative factors, the decomposition of the variance Var(Ŷ ) generalizes to:

var(Ŷ ) =
s∑

i=1

Di +
∑
i<j

Dij + · · · + D1...s . (7)

In the decomposition Eq. (7), Di corresponds to the main or first-order effect of Zi denoted
by var[E(Ŷ |Zi = zi)] in Section 4.2.2. The terms Dij , . . . , D1...s of Eq. (7) correspond to
the interactions between the input factors. This is very similar to the analysis of variance.
However, var(Ŷ ) now represents the variability of Ŷ with respect to the overall uncertainty
in the input factors, and not only over a limited number of experimental design points.
This makes it more adequate for taking account of irregular and non-linear effects.

In probabilistic terms, Di is the variance of the conditional expectation E(Ŷ |Zi = zi ).
If Ŷ is sensitive to Zi , E(Ŷ |Zi = zi ) is likely to vary a lot when zi changes and so Di is
likely to be large. This is why Di is also called an “importance measure” in the vocabulary
of sensitivity analysis.

Sensitivity indices Sensitivity indices are derived from the decomposition Eq. (7) by
dividing the importance measures by var(Ŷ ):

Si = Di/var(Ŷ )

Sij = Dij/var(Ŷ )

. . .

Consequently, the sensitivity indices satisfy

S1 + · · · + Ss + S1,2 + · · · + S1,2,...s = 1

and can be interpreted as the proportions of var(Ŷ ) explained by the various factorial
terms.

As explained in Section 4.1.2, two main types of sensitivity indices can be defined for
each factor Zi . The first-order sensitivity index Si is useful for measuring the average
influence of factor Zi on the model output, but it takes no account of the interaction
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effects involving Zi . The second useful index is the total sensitivity index of Zi , equal to
the sum of all factorial indices involving Zi :

TSi = Si +
∑
j �=i

Sij + · · · + S1...s .

Note that TSi is also equal to 1 − S−i , where S−i denotes the sum of all indices where Zi

is not involved.

4.2.4.2. Estimation based on Monte Carlo sampling
In order to estimate the first-order sensitivity index Si , the basic idea is to evaluate the
model response at N randomly sampled pairs of scenarios scA,k and scB,k defined by

scA,k = (zk,1, . . . , zk,i−1, zk,i , zk,i+1, . . . , zk,s)

scB,k = (z′
k,1, . . . , z

′
k,i−1, zk,i , z

′
k,i+1, . . . , z

′
k,s)

, k = 1, . . . , N

with the same level zk,i of Zi and all other levels sampled independently. Let D denote
var(Ŷ ), then

f̂0 = 1

2N

N∑
k=1

[f (scA,k) + f (scB,k)]

D̂ = 1

2N

N∑
k=1

[f (scA,k)
2 + f (scB,k)

2] − f̂ 2
0

D̂i = 1

N

N∑
k=1

f (scA,k).f (scB,k) − f̂ 2
0

are unbiased estimators of, respectively, the average value of Ŷ , its total variance, and the
main-effect of Zi . An obvious estimator of Si is then Ŝi = D̂i/D̂.

The procedure just described requires 2N model simulations for the estimation of each
first-order index. When the first-order indices of all s factors must be calculated, the
following procedure is more efficient computationally than performing s independent sets
of 2N simulations:

• generate N input scenarios by Monte Carlo sampling, and store them in a N × s

matrix M; the rows in M will form the scA,k scenarios for all factors;
• generate N more input scenarios by Monte Carlo sampling, and store them in a N × s

matrix M ′; the rows in M ′ will be used to form the scB,k scenarios;
• calculate the responses f (scA,k) for each scenario in M;
• for each factor Zi calculate the responses f (scB,k) where scB,k is determined by row

k of M ′ for all factors different from Zi and by row k of M for factor Zi ;
• apply the formulae given above for the calculation of Ŝi .
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This algorithm requires N(s+1) model simulations for the calculation of the first-order
sensitivity indices of s factors. An even more efficient sampling scheme, the winding stairs,
was proposed by Jansen (1994). It is not described here for the sake of brevity.

A winter wheat dry matter model (continued)

Figure 11 displays results of a sampling-based sensitivity analysis. A Monte Carlo sample of
size 1000 was used to generate a winding stairs set of simulations. Because there were eight
factors (seven parameters + climate) in the model and we chose a basis of 1000 Monte Carlo
samples, the number of model simulations needed to estimate first-order and total indices
was equal to 9 × 1000. In order to show the variability of the estimates due to sampling,

Figure 11. First-order and total Sobol sensitivity indices estimated from Latin hypercube
sampling combined with winding stairs; there were 20 runs with 9×1000 model simulations
for each run; the first part of the bars corresponds to the average (over the 20 runs) estimate
of the first-order index, the full bars indicate average estimates of total indices, while the
lines indicate extreme estimates of total indices.
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this procedure was repeated 20 times, and the ranges of the estimates over the 20 series of
simulations are displayed.

The results are different but quite consistent with those obtained with a designed exper-
iments. This is not very surprising because the model behaves quite linearly and so the
more intensive sampling-based method does not bring much more information on the model
behaviour.

The sampling-based methods give unbiased estimates of the sensitivity indices, but the esti-
mates can be quite variable and even take negative values, as Figure 11 shows. Homma and
Saltelli (1996) propose a corrective term to improve this problem. Nevertheless, it remains
important to evaluate the precision of the sensitivity indices by repeating the procedure a
few times as we did.

The same principle can be generalized to the estimation of second-order or higher
effects and to the estimation of total sensitivity indices. For estimating the interaction
sensitivity Sij , for instance, the model responses have to be calculated for pairs of scenarios
scA,k and scB,k with the same levels of Zi and Zj . For estimating total sensitivity, the
model responses have to be calculated for pairs of scenarios scA,k and scB,k with the same
levels of all factors except Zi . This allows the sensitivity index S−i to be estimated, and
TSi is then estimated by T̂Si = 1 − Ŝ−i .

4.2.5. FAST method for sampling and estimating variance-based criteria

The Fourier amplitude sensitivity test (FAST) is another method for estimating variance-
based measures of sensitivity. It is inspired by the Fourier decomposition of a time series
in signal theory and was developed initially for analysing the sensitivity of chemical reac-
tion systems to rate coefficients (Cukier et al., 1973, 1975; Schaibly and Shuler, 1978).
Recently, its use has been generalized to many domains of applications and new devel-
opments have been proposed. The presentation below is limited to the main principles.
More details can be found in Chan et al. (2000).

4.2.5.1. FAST sampling
In the FAST method, all input factors are assumed to be quantitative and coded so that
their domain of variation is [0, 1] . Then the possible scenarios belong to the multidi-
mensional input space [0, 1]s . With Monte Carlo sampling, the simulated scenarios are
selected at random within [0, 1]s . With the FAST method, they are selected systemati-
cally (or almost systematically) along a search trajectory which is specifically designed to
explore efficiently the input space. This is illustrated, in the simple case of two factors, in
Figure 12. Figure 12a shows a set of N = 100 scenarios sampled according to the FAST
principles. These scenarios were generated by regular sampling along the curve visible in
Figure 12b.

In the design of a FAST sampling scheme, an integer ωi is associated with each input
factor Zi . This integer is called the frequency of Zi and its choice will be explained
below. The levels of the input factors Zi for the simulated scenarios zk(k = 1, . . . , N),
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Figure 12. Illustration of FAST principles for two input factors Z1 and Z2. (a) Samples of (Z1 ,Z2)
values with ω1 = 2, ω2 = 5, φ1 = φ2 = 0 and N=100. (b) FAST sampling path indicating the order
of the generated scenarios (the numbers 1, 4 . . . indicate the first, fourth . . . generated scenarios).
(c) Values of Z1, Z2, and of a response Ŷ for N scenarios in ascending order of simulation.
(d) Sensitivity indices obtained for several frequencies.

are given by

zk,i = G(sin(ωiuk + φi)),

where the scalars

uk = −π + 2k − 1

N
π

form a regularly-spaced sample of the interval (−π, +π) and can be interpreted as coordi-
nates on the search curve; G(u) is a transformation function from [−1, 1] to [0, 1]; and the
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φis are optional random phase-shift parameter taking values in [0, 2π). The transformation
function

G(u) = 1

2
+ 1

π
arcsin(u),

proposed by Saltelli et al. (1999), ensures that the levels of each factor are uniformly, or
almost uniformly, sampled.

In Figure 12, ω1 = 2 , ω2 = 5 and φ1 = φ2 = 0. As can be verified in Figure 12b, each
ωi corresponds to the frequency with which the curve comes back to its starting value for
the levels of factor Zi . Figure 12b shows that the sampling path goes through each value
of Z1 exactly twice (in a given direction). Similarly, the sampling path goes through each
value of Z2 exactly five times.

4.2.5.2. Principles of FAST sensitivity estimation
The principle of FAST is that, if the response Ŷ is sensitive to a given factor Zi , then Ŷ

and Zi should vary simultaneously over the scenario index k. In Figure 12c, the variations
of Z1, Z2, and a putative response Ŷ = f (Z1, Z2) are displayed as a function of k. This
figure shows that the oscillations of Ŷ and those of the factor Z2 are quite simultaneous.
This result indicates that Z2 has a strong influence on the response. With the FAST method,
the sensitivity of the output to the factors is quantified by estimating a sensitivity index
for a series of frequency (Figure 12d). If the factor Zi has a strong influence on the model
output, the index takes high values for ω = ωi and for its higher harmonics (2ωi, 3ωi, . . .).
Figure 12d shows that the sensitivity index is higher for ω = ω2 = 5 than for ω = ω1 = 2.
This result reveals that the model output is more sensitive to Z2 than to Z1.

4.2.5.3. Spectral decomposition of f (zk,1, zk,2) variability
The variability of f (zk,1, zk,2) is decomposed into components associated with each
frequency ω from 1 to N − 1, defined by:

D[ω] = A2
ω + B2

ω,

where

Aω = 1

2π

N∑
k=1

f (zk,1, zk,2)cos(ωuk)

Bω = 1

2π

N∑
k=1

f (zk,1, zk,2)sin(ωuk).

The scalar D[ω] is called the spectral component of Ŷ at frequency ω, while Aω and
Bω are called the Fourier coefficients of Ŷ at frequency ω. They are theoretically defined
as integrals over [−π, +π ] , but they are shown here in the discrete summation form
imposed by the finite number of simulations. The scalar S[ω] = D[ω]/(

∑
D[ω]) can then
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be considered as the proportion of variability of f (zk,1, zk,2) associated with frequency ω.
The values of S[ω] are presented in Figure 12d.

4.2.5.4. The classical FAST method
The original FAST (Cukier et al., 1973, 1975; Schaibly and Shuler, 1978) is a method for
estimating essentially the first-order sensitivity indices (or main effects) of the factors Zi .
The frequencies of the different factors are chosen so that the spectral components D[ω]
of Ŷ at frequency ωi and at its first higher harmonics depend on the effects of input factor
Zi only. It follows that the sensitivity index of Zi can be estimated by

Si =
M∑

p=1

S[pωi ],

where M is the number of harmonics taken into account and is usually set to M = 4.
Adequate sets of frequencies have been proposed by Cukier et al. (1973) for up

to 19 factors. In FAST, there is a minimum number of simulations which is equal to
2Mmax(ωi) + 1. For example, when there are s = 8 factors, the frequencies given by
Cukier et al. (1973) are 23, 55, 77, 97, 107, 113, 121, 125, and so the minimum number
of simulations is equal to 8 × 125 + 1 = 1001.

4.2.5.5. The extended FAST method
The extended FAST method (Saltelli et al., 1999) allows the estimation of the first-order
and the total sensitivity indices. In a simulation study on a crop model, it appeared
more efficient than the Monte Carlo approach to estimate first and total sensitivity indices
(Makowski et al., 2004). As opposed to the classical FAST, it requires separate sets of
simulations for each input factor Zi of interest.

In the simulations dedicated to factor Zi , the frequency ωi must satisfy: ωi ≥
2M max(ωj ) where max(ωj ) denotes the largest frequency associated with a factor other
than Zi . As for classical FAST, there is a minimum number N0 of simulations, equal to
2Mωi + 1. In practice, N0 is usually chosen first, ωi is then chosen as the largest integer
satisfying 2Mωi +1 ≤ N0 and the other frequencies ωj are chosen to satisfy the constraint
ωi ≥ 2M max(ωj ) as well as a few other favourable properties.

The first-order sensitivity index of Zi is estimated by

Si =
M∑

p=1

S[pωi ],

as in classical FAST. The total sensitivity index of Zi is estimated by

TSi = 1 −
M max(ωj )∑

ω=1

S[ω],

since all frequencies lower than Mωmax(j) correspond to the factorial terms not
involving Zi .
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Example on the winter wheat dry matter (continued):

Figure 13 displays results of an extended FAST sensitivity analysis for the model, repeated
twenty times. For each replication and each input factor, a FAST sample of size 1000 was
generated. Thus, the number of model simulations needed to estimate first-order and total
indices was equal to 8×1000 per replication. For each replication, the phase-shift parameters
φ were drawn at random, and the frequencies were randomly allocated to all factors except the
one under study. The ranges of the estimates over the 20 series of simulations are displayed
in Figure 13.
The results are very coherent with the Sobol estimates (Fig. 11). However they show much
less variability between replications and a practical advantage is that the sensitivity indices
are always positive, as expected.

Figure 13. First-order and total sensitivity indices estimated by the extended FAST; there
were 20 runs with 8 × 1000 model simulations for each run; the first part of the bars
corresponds to the average (over the 20 runs) estimate of the first-order index, the full bars
indicate average estimates of total indices, while the lines indicate extreme estimates of total
indices.
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5. Discussion

Which method to choose?

As the previous sections have shown, there is a large diversity of methods to perform
sensitivity analyses. When choosing which one to use for a specific problem, important
points to consider are the objectives of the study, the number of input factors to vary, the
degree of regularity of the model and the computing time for individual model simulations.

If the objective is to screen for the most influential ones among a large number of input
factors, the method of Morris or factorial designs are well adapted. Factorial designs
with two-level factors are very efficient, but they give information only on the linear
trends associated with each input factor. The method of Morris, by contrast, allows the
investigation on the whole uncertainty ranges of the input factors.

When the objective is to quantify the influence of several input factors, experimental
designs are very flexible, but once again, they give information on the model behaviour
only for specific values of the input factors. Thus, it is necessary to assume, often implic-
itly, that the model is well-behaved and quite regular (for example, linear or near-linear
if factors take two levels; near-quadratic if the factors take three levels, etc.). Methods
based on intensive sampling, such as those described in the section on variance-based
methods, have the advantage of being “model-free”, that is, they do not rely on model
approximations and they explore the full uncertainty ranges of the input factors. However,
they require a large number of simulations.

In fact, there is no best method for all situations, and the differences between methods
are less crucial than the accurate description of the uncertainty sources. A good under-
standing of the techniques and the ability to adapt them to one’s situations is another key
element.

Additional aspects of sensitivity analysis

Some key aspects of sensitivity analysis have been mentioned only briefly above but
can be of great importance for a crop model.

The ability to take correlations into account between input factors, when generating
scenarios, can make simulations much more representative of the phenomena under study.
It was shown that such correlations can be taken into account in an uncertainty analysis.
This is much more difficult for sensitivity analysis. There is a need to develop methods
of sensitivity analysis that would take such correlations into account when interpreting
simulation results.

It is often of great interest to consider the sensitivity of a response to a whole group
of input factors (climatic/soil variables, or parameters associated with a specific growth
stage). For most methods presented above, this can be done by summing the factorial
indices associated with all factors within the group under consideration. The analogue of
a first-order index is then the sum of all factorial indices involving only factors within the
group. The analogue of a total index is the sum of all factorial indices involving at least
one factor within the group. Note that this is not equal to the sum of the total indices of
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the factors within the group, because interactions are counted several times within a sum
of total indices.

The sensitivity analysis of dynamic responses Ŷ (t) has not been considered explicitly in
this chapter. The methods described above can be applied to time t separately, and it may
then be interesting to follow how sensitivity indices change with time. However, it is often
more useful to perform sensitivity analyses on meaningful characteristics of the response
time series. These characteristics can be either chosen by the modeller or determined by
applying multivariate techniques such as the Principal Components Analysis or the Partial
Least Squares to the simulated response time series (Campbell et al., 2004).

For all the methods considered until now, only one level of uncertainty was considered
for each factor. However, it happens quite frequently that distinct levels of uncertainty
need to be considered: for example, climate uncertainty at a local scale versus a regional
scale; or uncertainty in parameters at present and after further experiments; or simply
uncertainties in the true levels of uncertainty on some parameters. An application in
forestry is presented by Gertner et al. (1996).

Software

General statistical packages make it possible to implement the methods of analysis
based on experimental design, analysis of variance and regression. But it is necessary
to be aware of some interpretations: the meaning of a significance test is dubious when
the responses come from a perfectly deterministic model. The SAS QC (SAS/QC User’s
guide, 1999) module includes procedures to construct factorial and optimal designs (proc
factex, proc optex).

Some software packages for general modeling or for risk analysis include methods for
sensitivity or uncertainty analysis (Crystall Ball, Risk). There is also softwares dedicated
to sensitivity analysis. These software packages are restricted to the calculation of local
sensitivity, but one exception is Simlab, which includes the main methods of global
sensitivity analysis (see Saltelli et al., 2004).
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Exercises

Uncertainty and sensitivity analysis with a model predicting the percentage of
diseased plants

We consider a model simulating the percentage of plants with eyespot pathogen (Pseu-
docercosporella hypotrichosises) in a field in function of cumulative degrees–days
since sowing. The model is defined by

Ŷ (t) = 100 × 1 − exp [− (c1 + c2) t]

1 + c2
c1

exp [− (c1 + c2) t]

where Ŷ (t) is the predicted percentage of diseased plants when the cumulative degrees–
days is equal to t , and θ = (c1, c2) are the model parameters.

Here, the objective is to predict the percentage for a field located in the Paris Basin
at t = 2300C◦day. The values of the two model parameters were studied previously
(Colbach and Meynard, 1995) but accurate results are not known. In this study, we
consider that the uncertainty ranges of c1 and c2 are [4.5 × 10−8 − 3.5 × 10−4] and
[4 × 10−4 − 6.5 × 10−3] respectively. The nominal values of c1 and c2 are equal to
1.75 × 10−4 and 3.5 × 10−3 respectively.

1. We assume that the uncertainty in c1 and c2 is modelled by uniform distributions over
the parameter uncertainty ranges. A sample of ten values of θ = (c1, c2) is generated
by Monte Carlo sampling and is reported in Table 8. Each value of θ defines an input
scenario.

(a) Calculate Ŷ (2300) for each one of the ten scenarios presented Table 8.
(b) Estimate the expected value and standard deviation of Ŷ (2300) from the ten

computed values of Ŷ (2300).

Table 8. Ten values of c1 and c2 generated
by Monte Carlo sampling.

c1 c2

1.71× 10−4 6.42 × 10−3

1.25 × 10−4 2.52 × 10−3

9.65 × 10−5 1.67 × 10−3

3.38 × 10−4 4.79 × 10−3

2.97 × 10−4 4.39 × 10−3

4.88 × 10−5 5.51 × 10−3

1.36 × 10−4 5.94 × 10−4

2.99 × 10−5 1.11 × 10−3

1.97 × 10−4 3.36 × 10−3

3.17 × 10−4 5.93 × 10−4
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(c) Estimate the probability P [Ŷ (2300) ≥ 80%] from the ten computed values of
Ŷ (2300).

(d) The procedure described above is repeated 5 times leading to a 5 samples of 10
values of θ = (c1, c2). Each sample is used to estimate the expected value of
Ŷ (2300). The 5 estimated values of E[Ŷ (2300)] are 93.59, 88.47, 95.28, 92.02,
96.48, 79.03. How do you explain this large variability?

(e) Define a procedure to choose the size of the sample of values of θ in order to
estimate accurately E[Ŷ (2300)] and P [Ŷ (2300) ≥ 80%]?

2. (a) Perform a local sensitivity analysis of Ŷ (2300) with respect to c1 and c2 at the
nominal parameter values. Which parameter has the highest relative sensitivity?

(b) Calculate five equispaced values of c1 and c2 from the minimal to the maximal
parameter values.

(c) Set c2 equal to its nominal value and calculate Ŷ (2300) for the five values of c1
defined above. Then, set c1 equal to its nominal value and calculate Ŷ (2300) for
the five values of c2.

(d) Calculate the sensitivity index of Bauer and Hamby (1991) (see textbook) for
each parameter from the computed values obtained in 2.(c). Which parameter has
the highest index?

(e) Calculate the sensitivity index of Bauer and Hamby (1991) for c2 when c1 is set
equal to its minimal value. Compare this index value with the value obtained
in 2.(d).

3. Consider a complete factorial design with three modalities per factor.

(a) How many distinct scenarios (i.e. values of θ = (c1, c2)) are included in this
design?

(b) Define a complete factorial design with three modalities per factor using only the
minimal, nominal and maximal parameter values.

(c) Calculate the general mean of Ŷi (2300) where Ŷi (2300) is the value of Ŷ (2300)

obtained with the ith scenario.
(d) The total variability of Ŷ (2300) can be measured by var[Ŷ (2300)] =

1
N

∑N
i=1[Ŷi (2300) − Ȳ ]2 where Ȳ is the mean of Ŷi (2300) and N the number

of scenarios in the factorial design. Calculate var[Ŷ (2300)].
(e) Estimate E[Ŷ (2300)|c1] for each value of c1 considered in the factorial design.
(f) Estimate E[Ŷ (2300)|c2] for each value of c2 considered in the factorial design.

(g) Estimate var{E[Ŷ (2300)|c1]} and then var{E[Ŷ (2300)|c1]}
var[Ŷ (2300)] .

(h) Estimate var{E[Ŷ (2300)|c2]} and then var{E[Ŷ (2300)|c2]}
var[Ŷ (2300)] .

(i) To which sensitivity indices do var{E[Ŷ (2300)|c1]}
var[Ŷ (2300)] and var{E[Ŷ (2300)|c2]}

var[Ŷ (2300)] correspond?

(j) Estimate var[Ŷ (2300)|c1] for each value of c1 considered in the factorial design.
(k) Estimate var[Ŷ (2300)|c2] for each value of c2 considered in the factorial design.

(l) Estimate E{var[Ŷ (2300)|c1]} and then E{var[Ŷ (2300)|c1]}
var [Ŷ (2300)].



Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

[14:25 2006/2/23 CH-03.tex] ISBN: 0-444-52135-6 WALLACH: Working with Dynamic Crop Models Page: 99 55–100

3. Uncertainty and sensitivity analysis for crop models 99

(m) Estimate E{var[Ŷ (2300)|c2]} and then E{var[Ŷ (2300)|c2]}
var[Ŷ (2300)] .

(n) To which sensitivity indices do E{var[Ŷ (2300)|c1]}
var[Ŷ (2300)] and E{var[Ŷ (2300)|c2]}

var[Ŷ (2300)] correspond?

(o) Compare the indices calculated in 3.(n) and those calculated in 3.(i). Are they
different? Why?
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Answers

Only the numerical results are supplied.

1.(b) The expected value and standard deviation are equal to 81.15 and 27, respectively.

1.(c) About 0.6.

2.(d) 0.96 for c1 and 0.51 for c2.

3.(a) 9.

3.(c) 68.82.

3.(d) 1545.9.

3.(e) 33.15, 82.89 and 90.42.

3.(f) 40.18, 67.76 and 98.52.

3.(g)
var

{
E[Ŷ (2300)|c1 ]

}
var[Ŷ (2300)] = 0.42.

3.(h)
var

{
E[Ŷ (2300)|c2 ]

}
var[Ŷ (2300)] = 0.37.

3.(j) 2925.01, 855.51 and 271.1.

3.(k) 1333.82, 3060.91 and 6.57.

3.(l)
E
{

var[Ŷ (2300)|c1 ]
}

var[Ŷ (2300)] = 0.88.

3.(m)
E
{

var[Ŷ (2300)|c2 ]
}

var[Ŷ (2300)] = 0.48.




