Optimisation de variétés de tournesol sous incertitude climatique

Ronan Trépos (master 2 de Bastien Poublan)

31 octobre 2014

Collaborations: B. Poublan, V.Picheny et R.Trépos

Sommaire

(1) Présentation du stage
(2) Méthodes développées

- Sélection d'un sous-ensemble de climat
- Reconstruction des distributions de rendements
(3) Résultats obtenus

4 Conclusion

Optimisation de variétés de tournesol sous incertitude climatique

- Modèle de simulation dynamique :

Contexte :

- Type de sol,
- Conduite de culture,

Traits phénotypiques:

- Taille des feuilles,
- Inclinaison de la plante,

Récolte : - Rendement

```
Données climat :
- T }\mp@subsup{}{}{\circ}\textrm{min
    - T`max,
- Pluie,
```

- Objectif : trouver le phénotype permettant d'obtenir les meilleurs rendements

Tournesol

- Différentes caractéristiques:
- 8 traits phénotypiques
- Minimum et maximum pour chaque trait
- Variations continues

Gestion de l'incertitude

- Séries temporelles pour la description du climat:
- Données journalières
- Données de 1975 à 2012 sur 5 emplacements en France $\Rightarrow 190$ climats différents

Température maximale

Ensoleillement

Précipitations

Enjeux

- Prise en compte de l'incertitude climatique \Rightarrow Temps de calcul important
- Comment réduire le nombre de simulations?
- Quels critères statistiques de performance?
\diamond Climat variable aléatoire \rightarrow Rendement variable aléatoire

Objectifs du stage
\Rightarrow Formalisation du problème d'optimisation
\Rightarrow Solution algorithmique

Optimisation : quelle formulation?

Critères statistiques

- Moyenne, variance, quantile ...
- Utilité espérée, "CVaR" ...

Données

- 1 phénotype : 190 rendements

Formulation retenue

Maximiser: $\left\{\begin{array}{l}E[R] \\ C V a R_{30 \%}(R)\end{array}, \mathrm{R} \in \mathbb{R}^{190}\right.$

Différentes approches

- Approche par échantillonnage exhaustif :

- Approche à l'aide d'un apprentissage à priori :

Discussion sur l'approche choisie

- Séparation apprentissage a priori et optimisation
- Adaptable à un autre simulateur
- Approche sur la classification
- Séries climatiques différentes
- Rendements différents
- Limites:
- Résolution d'un problème approché
- Pas de correction en ligne sur l'apprentissage

Sélection d'un sous-ensemble de climat

Recherche de 10 climats différents donnant 10 rendements différents

Étapes de la classification

- Calcul de distance entre les séries temporelles
- Agrégation des distances (Normalisation + somme pondérée)
- Algorithme de classification non supervisée (K-means, PAM, classification hiérarchique)
\Rightarrow Sous ensemble de climats

Température minimale

Température maximale

Évapotranspiration Ensoleillement

Précipitations

Rendements
28.99
25.5
...
22
24
26.5

Distance entre deux séries (même variable)

- Distance DTW (Dynamic Time Warping)
- Prise en compte de "décalage" entre deux séries
- Température minimale, maximale, ensoleillement, évapotranspiration : ± 7 jours
- Précipitation : ± 3 jours

Évapotranspiration

Précipitations

Agrégation des distances (toutes les variables)

Distances

- Distance DTW inter-climats
- Distance euclidienne inter-rendements
- Normalisation des distances

Utilisation dans la classification de la distance suivante :

$$
\begin{aligned}
\text { Distance }_{\text {Totale }} & =\frac{1}{2}\left(\alpha_{1} \bar{D}_{\text {Tmin }}+\alpha_{2} \bar{D}_{\text {Tmax }}+\alpha_{3} \bar{D}_{\text {Evapo }}\right. \\
& \left.+\alpha_{4} \bar{D}_{\text {Ensol }}+\alpha_{5} \bar{D}_{\text {Pluie }}\right) \\
& +\frac{1}{2}\left(\mu_{1} \bar{D}_{\text {Pheno1 }}+\mu_{2} \bar{D}_{\text {Pheno2 }}+\ldots+\mu_{10} \bar{D}_{\text {Pheno10 }}\right)
\end{aligned}
$$

Reconstruction de la distribution (10 rendements $\Rightarrow 190$ rendements)

- Approches non paramétriques

Pour un nouveau phénotype p et à partir des rendements obtenus sur les 10 climats représentatifs des classes I_{1}, \ldots, l_{10} : $R\left(p, I_{1}\right), \ldots, R\left(p, I_{10}\right)$, reconstruire une estimation des rendements sur les 190 climats: $\hat{R}\left(p, c_{1}\right), \ldots, \hat{R}\left(p, c_{190}\right)$.

Reconstruction des 190 rendements (méthode 3)

- Soit $\tilde{R}=\{\overbrace{R\left(p, I_{1}\right), \ldots, R\left(p, I_{1}\right)}^{N_{1}}, \overbrace{R\left(p, I_{2}\right), \ldots, R\left(p, I_{2}\right)}^{N_{2}}, \ldots, R\left(p, l_{10}\right)\}$
- Soit une base B de phenotypes evalués sur les 190 climats :
$\mathcal{B} \in \mathbb{R}^{\|B\|, N}$
- on pose : $\tilde{\mathcal{B}}_{i} \in\{\overbrace{\mathcal{B}\left(i, I_{1}\right), \ldots, \mathcal{B}\left(i, l_{1}\right)}^{N_{1}}, \overbrace{\mathcal{B}\left(i, l_{2}\right), \ldots, \mathcal{B}\left(i, l_{2}\right)}^{N_{2}}, \ldots, \mathcal{B}\left(i, l_{10}\right)\}$
- calcul de résidus : $\epsilon_{i, j}=\mathcal{B}_{i, j}-\tilde{\mathcal{B}}_{i, j}$
- alors $\hat{R}_{j}=\tilde{R}_{j}+\zeta_{j}$
- où ζ_{j} est une perturbation du rendement pour le climat j dont le signe est donné par les $\epsilon_{i, j}$ et l'ampleur est fonction de la variance intra classe du climat j, la variance de \tilde{R} et la variance de $\tilde{\mathcal{B}}$.
remarque : comme base B, on peut prendre les 10 pheno utilisés pour la classification pour lesquels on a simulé le rendement sur les 190 climats.

Reconstruction des 190 rendements

Rendements obtenus pour deux phénotypes:

Noir: distribution exacte

Méthode d'optimisation :

- Utilisation de deux critères de performance
- Optimisation multicritère NSGA2
- 80 individus
- 80 générations
- 10 climats
- Deux lancements de la méthode d'optimisation
- Analyse post traitement avec 190 climats
- Comparaison avec 1000 phénotypes aléatoires

Pareto sets using 10 random pheno for reconstruction

- Globalement bonne reconstruction de l'espérance et la CVar30 sur les 1000 phénos du LHS
- Mauvaise reconstruction des phéno du front de pareto

Pareto sets using 10 pheno from previous pareto front

Difference : on utilise le front de Pareto issu du 1er lancement de NSGA-II comme base B pour la reconstruction au lieu de celle des 10 phenos utilisés pour la classification. \rightarrow requiert la simulation exhaustive (sur les 190 climats) des phéno du front de pareto.

Résultats obtenus

Représentation des caractéristiques des phénotypes présents dans le front de Pareto

Représentation d'un groupe de phénotypes optimaux

Stratégie prudente

- Période de floraison courte
- Faible capacité d'interception de la lumière (Inclinaison de la plante)
- Eviter les risques hydriques et solaires
\rightarrow CVaR grande
- Sélection d'un sous-ensemble de climats par classification
- Distance "DTW" pour la classification, mise en place d'un algorithme (k-means)
- Différents critères de comparaison retenus :
- Rendement moyen
- "Conditional Value at Risk" à $\alpha \%$ du rendement pour différentes valeurs de α
- Résultats satisfaisants dans l'optimisation
- Perspectives :
- Poids pour l'agrégation des distances
- Apprentissage dans l'optimisation (modifications de l'algorithme d'optimisation MO-PSO)

Merci de votre attention

