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Foreword

In this 1h30 course + 1h30 hands-on class, we address
unconstrained optimization with continuous variables

find one or many x∗ ≡ arg min
x∈S∈Rd

f (x) (1)

where S is typically the compact [xLB, xUB] ∈ Rd .

We cover the principles (the optimization “engines”) of two
algorithms, Nelder-Mead and CMA-ES. These algorithms have
the same goal, but one is deterministic and one is stochastic.

Both algorithms do not use metamodels: because they do not
model f , they are insensitive to a monotonic transformation of
f () (e.g., they perform the same on f (), f 3(), exp(f ())); they do
not build any approximation of f () valid in the entire S (like
EGO does).
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Optimizers are iterative algorithms

We are going to approximate the solution(s) to Problem (1) using
iterative optimization algorithms (optimizers) that exchange
information with the objective function code (that wraps the often
costly simulation).

optimizer
minx f (x)
state S

f of simulation
at x

x

f

or in a state-space representation,

xt+1 = φ
(
St+1

)
(2)

St+1 = ψ
(
St , (xt , f (xt))

)
(3)

The optimizer is defined by S (state vector), φ (next iterate
equation) and ψ (state equation).
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Content of the talk

A pattern search method: the Nelder-Mead algorithm

A stochastic optimizer: CMA-ES
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The Nelder-Mead algorithm

1965. A great compromise between simplicity and efficiency:
[14] is cited about 27000 times on Google Scholar.

It belongs to the class of pattern search methods [2], i.e.,
methods that propose new points to evaluate based on the
deformation of a geometrical pattern.

Sometimes also called “simplex” (not to be mistaken with that
of linear programming) because the pattern is made of a
simplex: d + 1 points in a d-dimensional space

x0

x1

x2
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Simplex properties (1)

x0

x1

x2

Notation: f (x0) ≤ f (x1) ≤ . . . ≤ f (xd)

(x1 − x0, x2 − x0) is a basis of Rd .

(x1 − x0, x2 − x0,−(x1 − x0),−(x2 − x0)) a
positive set (−∇f (x0) can be approximated
as a positive linear combination of the
vectors, a condition for convergence with
shrink steps, see later).

d + 1 is the minimum number of points to construct a linear
interpolation.
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Simplex properties (2)

d + 1 is the minimum number of points to construct a linear
interpolation:

f̂ (xi ) = α0 + α1x
i
1 + . . .+ αdx

i
d = f (xi ) , i = 0, d

1 x0
1 . . . x0

d

1 x1
1 . . . x1

d

. . .
1 xd1 . . . xdd



α0

α1

αd

 =


f (x0)
f (x1)

f (xd)



⇔


1 x0

1 . . . x0
d

0 x1
1 − x0

1 . . . x1
d − x0

d

. . .
0 xd1 − x0

1 . . . xdd − x0
d



α0

α1

αd

 =


f (x0)

f (x1)− f (x0)

f (xd)− f (x0)


which has a unique solution iff lower right sub-matrix L is invertible,
or better, well-conditioned.
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Simplex properties (2)
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Simplex properties (3)

The diameter of a simplex
{

x0, . . . , xd
}

is its largest edge,

diam({x0, . . . , xd}) = max
0≤i<j≤d

∥∥xi − xj
∥∥

A measure of how well the edges of a simplex span Rd is its
normalized volume (noting s ≡ diam({x0, . . . , xd})),

vol({x0, . . . , xd}) = vol

(
x0

s
, . . . ,

x0

s

)
=

det(L)

d !sd
,

which is a scale invariant measure of the volume of the simplex.
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A Nelder-Mead iteration

New points are generated through simple geometrical
transformations. Remember f (x0) ≤ f (x1) ≤ . . . ≤ f (xd).

x0

x1

x2

xc

xr

xe

xco
xci

xs2

xs3
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A Nelder-Mead iteration

Reflection: take a step from the worst to its symmetric w.r.t. the
cendroid of the d better points ≈ a descent step, whose size and
direction come from the current simplex,

x0

x1

x2

xc

xr

xe

xco
xci

xs2

xs3

xr = xc + δr (xc − xd) where δr = 1 and xc =
1

d

d−1∑
i=0

xi

calculate f (xr ) (cost 1 call to f ).
If f (x0) ≤ f (xr ) < f (xd−1), xd ← xr , end iteration.
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A Nelder-Mead iteration

Expansion: if f (xr ) < f (x0), progress was made, increase step size.

x0

x1

x2

xc

xr

xe

xco
xci

xs2

xs3

xe = xc + δe(xc − xd) where δe = 2

If f (xe) ≤ f (xr ), xd ← xe , end iteration.
Otherwise, xd ← xr , end iteration.
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A Nelder-Mead iteration

Contraction: if f (xr ) ≥ f (xd−1), little progress, reduce step size:
Outside contraction if f (xr ) < f (xd); Inside contraction if
f (xr ) ≥ f (xd).

x0

x1

x2

xc

xr

xe

xco
xci

xs2

xs3

xc{i ,o} = xc + δc{i ,o}(xc − xd) where δci = −1/2 and δco = 1/2

If f (xco) ≤ f (xr ), xd ← xco ; Else xd ← xr ; End iteration.
If f (xci) < f (xd), xd ← xci and end iteration; Else shrink.
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A Nelder-Mead iteration

Shrink: if f (xci) > f (xd), no progress, reduce simplex size (direction
more influenced by x0 and smaller step size).

x0

x1

x2

xc

xr

xe

xco
xci

xs2

xs3

xs{1,...,d} = x0 + γs(x{1,...,d} − x0) where γs = 1/2

Evaluate f at xs1, . . . , xsd (cost d), end iteration.
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Flow chart of the Nelder-Mead algorithm

initialize simplex,
min diam,

max calls (to f )

do a Nelder Mead iteration
(and reorder points with increasing f )

diam(simplex)<min diam or
nb calls to f > max calls ?

stop

no

yes
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Properties of the Nelder-Mead algorithm

An iteration may cost 1 call to f if end at reflection, or 2 calls
(reflection + expansion; reflection + contraction) or d + 2 calls
(reflection + expansion + shrink).
No shrink step is ever taken on a convex function (proof in [2] p.
148).
It always converges to a stationary point (where ∇f (x) = 0)
when d = 1 (proof in [8]) and f is continuously differentiable.
However it may converge to nonstationary points:

Nelder-Mead operates a series of con-
tractions and converges to a nonstation-
ary point on McKinnon functions which
are convex and continuously differentiable
(plot from [12]).
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Practicalities

Restarts: after each iteration, add a restart test,
if vol < ε (say 10−4), restart the simplex at x0.

Bound constraints handling, xLB ≤ x ≤ xUB: the solution
used in the nlopt software ([6], a R version exists) is to project
points onto the constraints whenever a Nelder Mead
transformation creates out-of-bounds points. This may induce a
collapse of the simplex onto a subspace and prevent convergence.

Works often well when d ≤ 10 even on discontinuous,
moderately multi-modal, moderately noisy functions.
Nelder-Mead seems to contain a minimal set of operations to
rapidly adapt to f local curvatures.
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Converging extensions to the Nelder-Mead

algorithm

Do a 180◦ rotation of the simplex when the reflection does not
work ([2, 16]): ensures that a descent direction can be found if
the simplex is small enough (either d>∇f (x0) < 0 or
−d>∇f (x0) < 0, unless at a stationary point).

A version with space filling restarts and bound constraints, [11].

. . . (393 articles with Nelder Mead in the title on Google
Scholar).
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The CMA-ES algorithm – Introduction (1)

A stochastic way of searching
for good points. Replace the
previous (simplex / simplex
transformations) by (multi-
variate normal distribution /
sampling and estimation).

N (m,C) represent our belief
about the location of the opti-
mum x?.

x_1

x_
2

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

m
∼ N (m,C)

R. Le Riche (CNRS EMSE) Optimization without metamodel 14/37 March 2018 14 / 37



Multivariate normal

A d-dimensional Gaussian is
fully described by its mean
and covariance ⇒ the central
question is “how to adapt the
mean and covariance of N to
optimize efficiently?”.

Sample generation:

L ← cholesky(C)
U ∼ N (0, I) {rnorm in R}
x← m + L × U

because if Cov(U) = I and x = Lu,

then Cov(X) = LCov(U)L> = LL>

= C −10 −5 0 5 10

−
10

−
5

0
5

10
15

samples[, 1]

sa
m

pl
es

[, 
2]

m =

[
0
0

]
eig(C)=

{[
30
1

]
, 1√

2

[
1 −1
1 1

]}

m =

[
−5
10

]eig(C)=

{[
2
1

]
, 1√

5

[
1 2
−2 1

]}

R. Le Riche (CNRS EMSE) Optimization without metamodel 15/37 March 2018 15 / 37



The CMA-ES algorithm – Introduction (2)

Originated in the evolutionary computation community with the
work of Niko Hansen et al. in 1996 [4, 5], now turning more
mathematical (cf. work by Anne Auger, [1, 15], Dimo Brockhoff,
. . . ).

A practical tutorial is [3].

The presentation is restricted to the main concepts. To start
with, ES-(1+1) with constant step.
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The constant step size ES-(1+1)

Algorithm 1 constant circular step ES-(1+1)

Require: m ∈ S, σ2, tmax

1: calculate f (m), t ← 1
2: while t < tmax do
3: sample: x ∼ N (m, σ2I)
4: calculate f (x), t ← t + 1
5: if f (x) < f (m) then
6: m← x
7: end if
8: end while

The simplest stochastic optimizer: the covariance matrix is C = σ2I.
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The choice of σ2 is critical
Minimize the sphere function
f (x) = ‖x‖2, x ∈ R10, start-
ing from m = (4, . . . , 4)> with
ES-(1+1) constant circular step
size, 10 repetitions. Plot shows
the 25%, 50% and 75% quan-
tiles.
A constant step size may go
from too small to too large dur-
ing convergence.
The optimal step size for the
sphere function is (proof in a later

slide)

σ? ≈ 1.22
‖x‖
d

.

0 100 200 300 400

−
6

−
4

−
2

0
2

nb. calls

lo
g1

0(
f)

random

normal sig=0.1

normal sig=1

normal sig=10

normal sig opt

quartiles
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Multivariate normal facts

In the simple ES-(1+1), the
perturbation seen by the cur-
rent mean m is ‖x − m‖2 =
σ2
∑d

i=1 u
2
i where ui ∼ N (0, 1)

iid,
‖x−m‖2 ∼ σ2χ2

d

As d ↗, χ2
d → N (d , 2d)

and
√
χ2
d → N (

√
d , 1/2) (see

graph, d = 2, 10, 100)
⇒ as d ↗, the points are con-
centrated in a sphere of radius
σ
√
d centered at m.
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Optimal step size of ES-(1+1) with the sphere

function (1)

The improvement ito f is
I2 = ‖m‖2 − ‖m + σU‖2

= m>m− (m + σU)>(m + σU)
= −σ2U>U− 2σm>U

U>U
d ↗
−−−→ N (d , 2d) ≈ d

I2 ≈ −σ2d − 2σm>U

I2 ∼ N (−σ2d , 4σ2‖m‖2)

The expected improvement of
ES-(1+1) is

E [max(0, I2)] =
∫∞

0
I2p(I2)dI2 =∫ +∞

σd/(2‖m‖)(2σ‖m‖i − σ2d)φ(i)di

with the normalization i = (I2 +
σ2d)/(2σ‖m‖) and φ() pdf of i ∼
N (0, 1)
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Optimal step size of ES-(1+1) with the sphere

function (2)

E [max(0, I2)] = −σ2d
[

1− Φ
(

σd
2‖m‖

)]
+ 2σ‖m‖φ

(
σd

2‖m‖

)
where Φ() denotes the cdf of N (0, 1). Multiplying by d

‖m‖2 and

introducing the normalized step σ = σd
‖m‖ , the normalized

improvement is

d
‖m‖2E [max(0, I2)] = σ2

[
Φ(σ

2
)
]

+ 2σφ(σ
2

)

which is maximized at σ? ≈ 1.22 ⇒ σ? ≈ 1.22‖m‖
d
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Optimal step size of ES-(1+1) with a parabolic

function

Let optimize f (x) = 1
2 x>Hx with an ES-(1+1) whose steps follow

x−m ∼ N (0, σ2C ).
C can be decomposed into the product of its eigenvectors B and eigenvalues D2,
C = BD2B>.
We choose C = H−1 and perform the change of variables y = D−1B>x. Then,
f (x) = 1

2 x>BD−1D−1B>x = 1
2 y>y = f (y) ⇒ in the y -space f is a sphere.

The covariance of Y is Cy = σ2D−1B>BD2B>BD−1 = σ2I
⇒ sphere function and spherical perturbations, we can use the result

σ? = 1.22‖y‖d = 1.22
d

√
x>BD−2B>x = 1.22

d

√
x>Hx

C proportional to the inverse of the Hessian allows to use the sphere
optimality results and is the best choice when there is only local
information (∇f (m),∇2f (m)).

This is what CMA-ES learns.
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ES-(µ, λ) flow chart

CMA-ES is an evolution strategy ES-(µ, λ): λ points sampled, the µ
best are used for updating m and C.

Algorithm 2 Generic ES-(µ, λ)

Require: m ∈ S, C, tmax

1: calculate f (m), t ← 1, g ← 1
2: while t < tmax do
3: sample: x1, . . . , xλ ∼ N (m(g),C(g))
4: calculate f (x1), . . . , f (xλ), t ← t + λ
5: rank: f (x1:λ) ≤ . . . ≤ f (xλ:λ)
6: estimate m(g+1) and C(g+1) with the µ bests, x1:λ, x2:λ, . . . , xλ:λ.
7: g ← g + 1
8: end while

Default semi-empirical values for CMA-ES (N. Hansen):
λ = 4 + b3 ln(d)c, µ = bλ

2
c.
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A simplified CMA-ES

We now present a simplification of the CMA-ES algorithm that is
easier to understand while keeping some of the key ideas. It will not
compare in performance with the true CMA-ES. Disregarded
ingredients are

weighting of the sampled points

separation of the adaptation of the step size and covariance
“shape”, C = σ2C

simultaneous rank 1 and rank µ updates of the covariance matrix

For competitive implementations, refer to the official tutorial [3].

R. Le Riche (CNRS EMSE) Optimization without metamodel 24/37 March 2018 24 / 37



Points versus steps (1)

Points are generated from sampling, at iteration g , N (m(g),C(g)),

xi = m(g) +Ni(0,C(g)) , i = 1, λ

The associated step is

yi = xi −m(g) = Ni(0,C(g))

CMA-ES learns steps, as opposed to points. Points are static, steps
are dynamic. Efficient optimizers (e.g., Nelder Mead, BFGS, . . . )
make steps.
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Points versus steps (2)

good steps

good points

m(g)

m(g+1)

N of good steps
centered at m(g+1)

N of good points
centered at m(g+1)

Note how the law of good steps stretches in the good direction
as opposed to the good points (plot from [3])
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Update of the mean

Remember the order statistics notation for the new sampled points

f (x1:λ) ≤ . . . ≤ f (xλ:λ)

The new mean is the average of the µ best points,

m(g+1) = 1
µ

∑µ
i=1 xi :λ
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Covariance matrix estimation

Empirical estimate of the good steps,

C(g+1) = 1
µ

∑µ
i=1(xi :λ −m(g))(xi :λ −m(g))> (4)

= 1
µ

∑µ
i=1 yi :λyi :λ>

Empirical estimate of the good points (don’t use),

C
(g+1)
EDA =

1

µ− 1

µ∑
i=1

(xi :λ −m(g+1))(xi :λ −m(g+1))>

where EDA means Estimation of Density Algorithm (aka cross-entropy method,

EMNA – Estimation of Multivariate Normal Algorithm).

Both estimators are unbiased. They require µ ≥ d linearly
independent y’s to have full rank and λ ≥ 20d to be reliable for
well-conditioned (cond(C) < 10) problems [3].
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Rank 1 and time averaging for covariance matrix

estimation (1)

If f is ill-conditioned (large ratio of largest to smallest curvatures),
the estimator (4) requires large µ (hence λ) which makes the
optimizer costly.
Solution: account for information coming from past iterations by
time averaging, which allows few samples and rank 1 updates.

Use the average good step,

y = 1
µ

∑µ
i=1

(
x(i :λ) −m(g)

)
= m(g+1) −m(g) (5)
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Rank 1 and time averaging for covariance matrix

estimation (2)

and time averaging of the covariance estimates,

C(g+1) = (1− c1)C(g) + c1yy> (6)

where 0 ≤ c1 ≤ 1.
If c1 = 1, no memory and C(g+1) has rank 1 (degenerated gaussian
along y).
Default1 c1 = 2/((d + 1.3)2 + µ).
1/c1 is the backward time horizon that contributes to about 63% of
the information [3].

1Default for the complete CMA-ES, not sure it applies to this simplified
version. Idem with cc later.
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Steps cumulation

The estimation (6) has a flaw: it is not
sensitive to the sign of the step, yy> =
(−y)(−y)>. It will not detect oscillations
and cannot converge. Worse, it will in-
crease step size around x?.

x?

⇒ use cumulated steps (aka evolution path) instead of y in (6),

p(g+1) = (1− cc)p(g) +
√
cc(2− cc)µ y (7)

Default cc = 4+µ/d
d+4+2µ/d .

The weighting in (7) is such that if yi :λ ∼ N (0,C) and p(g) ∼ N (0,C), then
p(g+1) ∼ N (0,C).

Proof: y = 1
µ

∑µ
i=1 yi :λ ∼ N (0, µ

µ2 C),

p(g+1) ∼ N (0, (1− cc )2C) +N (0, cc (2−cc )
µ

C) ∼ N (0,C). �

R. Le Riche (CNRS EMSE) Optimization without metamodel 31/37 March 2018 31 / 37



Practicalities

Accounting for the variables bounds:

repeat
sample: x ∼ N (m,C)

until xLB ≤ x ≤ xUB

Another stopping criterion: a maximum number of f
calculations without progress (to avoid stagnation).
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Concluding remarks I

Both algorithms are likely to miss the global optimum:
practically, they are local (although CMA-ES is asymptotically
convergent to the global optimum and Nelder-Mead may go over
regions of attraction to local optima).

Restart Nelder-Mead and CMA-ES at convergence (possibly
force a few early convergences for restarts). Competitive
versions of these algorithms use restarts (e.g., [9, 11]).
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Concluding remarks II

A tempting idea when f () is costly:

1 Make a design of experiments (X,F) and build a metamodel f̂
2 optimize the (almost free) f̂ with your favorite optimizer,

xt+1 = arg minx∈S f̂ (x)
3 Calculate f (xt+1), stop or back to 1 with

(X,F) ∪ (xt+1, f (xt+1)).

but convergence may be harmed if f̂ (xt+1) ≈ f (xt+1) and xt+1

far from x? ⇒ use a well-designed optimizer for this, e.g., EGO
[7], saACM-ES [10] or an EGO-CMA mix [13].

Acknowledgments: I would like to thank Victor Picheny, Stéphanie
Mahévas and Robert Faivre for their invitation at this MEXICO
network school.
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