
A first interpretable approach:

SIRUS



Why do we need interpretability?

Machine learning is used for decision support.

Predicting is not enough

Understanding predictions is vital

• for Machine learning to be accepted (sensible applications in health,

justice, defense)

• To improve algorithms (e.g., detect unfairness and try to correct it)

Keywords: trust, transparency, accountability, fairness, ethics.

NIPS2017 debate: Interpretability is necessary for Machine learning

https://www.youtube.com/watch?v=93Xv8vJ2acI
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Interpretable Models

• No agreement about a rigorous definition of interpretability

[Lipton, 2016, Doshi-Velez and Kim, 2017, Murdoch et al., 2019]

• Minimum requirements for interpretability
1. Simplicity [Murdoch et al., 2019]

2. Stability [Yu, 2013]

3. Predictivity [Breiman, 2001b]
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Existing Approaches

• Black-box models

E.g. Neural networks, Random

forests

Combined with post-processing

E.g. variable importance

sensitivity analysis

local linearization

• Interpretable models

E.g. decision trees, decision rules

X
(2) < 1.2 X

(2) � 1.2

X
(1) < 6.2

X
(1) � 6.2

X
(1) < 0.3

X
(1) � 0.3

Hard to operationalize

Unstable
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SIRUS: Stable and Interpretable RUle Set

An example: SIRUS output on Titanic data set [Bénard et al., 2019]

Average survival rate ps = 39%.

if sex is male then ps = 19% else ps = 74%

if 1st or 2nd class then ps = 56% else ps = 24%

if 1st or 2nd class
& sex is female

then ps = 95% else ps = 25%

if fare < 10.5£ then ps = 20% else ps = 50%

if no parents or
children aboard

then ps = 35% else ps = 51%

if 2st or 3nd class
& sex is male

then ps = 14% else ps = 64%

if sex is male
& age � 15

then ps = 16% else ps = 72%
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SIRUS

Principle

• Build a random forests and extract all decisions rules from all trees

• Select the rules that appear with a frequence larger than p0

• Aggregate the rules to obtain the final estimator.

Principle

Frequent paths in random trees = strong and robust patterns in the data.
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Technical detail

• Preprocessing: discretize features based on their quantiles

• Random forests: building trees of depth 2

Probability that a ⇥-random tree contains a given path P 2 ⇧

pn(P) = P(P 2 T (⇥,Dn)|Dn)

Selected paths

P̂M,n,p0 = {P 2 ⇧ : p̂M,n (P) > p0}

where

p̂M,n(P) =
1

M

MX

`=1

1P2T (⇥`,Dn)

is the Monte-Carlo estimate, directly computed using the random forest

with M trees parametrized by ⇥1, ...,⇥M .
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SIRUS - Rule

How to recover a rule from a path ?
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Ĥn(P5) Ĥn(P6)
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Ĥn(P5)

R2 \ Ĥn(P5)
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The final classifier corresponds to the averaging of all selected rules. 7



Stability - definition

Define

• D0
n, ⇥

0 independent copies of Dn and ⇥

• p̂
0
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2
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��+
��P̂ 0
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�� .
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Stability - a theoretical result

(A1) The subsampling rate an satisfies lim
n!1

an = 1 and lim
n!1

an
n = 0.

(A2) The number of trees Mn satisfies lim
n!1

Mn = 1.

(A3) X has a density f with respect to the Lebesgue measure, continuous,

bounded, and strictly positive.

Let U? = {p?(P),P 2 ⇧} be the set of all theoretical probabilities of

appearance of all paths.

Proposition Bénard et al. [2019]

Assume that Assumptions (A1)-(A3) are satisfied. Then, provided

p0 2 [0, 1]\U?, we have

lim
n!1

ŜMn,n,p0 = 1, in probability.
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Sketch of proof

The asymptotic stability of SIRUS comes from the two following points:

1. The bias of p̂Mn,n(P) tends to zero.

• Prove that CART-splitting criterion is consistent and

asymptotically normal when cuts are limited to empirical quantiles

and the number of trees grows with n (A3).

2. The variance of p̂Mn,n(P) tends to zero.

The variance can be decomposed into two terms:

• the variance generated by the Monte-Carlo randomization, which

goes to 0 as the number of trees increases (A2).

• the variance of pn(P), which is a bagged estimate and thus an

infinite-order U-statistic. The result comes from Mentch and Hooker

[2016] since lim
n!1

an/n = 0 (A1).

10



Sketch of proof

The asymptotic stability of SIRUS comes from the two following points:

1. The bias of p̂Mn,n(P) tends to zero.

• Prove that CART-splitting criterion is consistent and

asymptotically normal when cuts are limited to empirical quantiles

and the number of trees grows with n (A3).

2. The variance of p̂Mn,n(P) tends to zero.

The variance can be decomposed into two terms:

• the variance generated by the Monte-Carlo randomization, which

goes to 0 as the number of trees increases (A2).

• the variance of pn(P), which is a bagged estimate and thus an

infinite-order U-statistic. The result comes from Mentch and Hooker

[2016] since lim
n!1

an/n = 0 (A1).

10



Sketch of proof

The asymptotic stability of SIRUS comes from the two following points:

1. The bias of p̂Mn,n(P) tends to zero.

• Prove that CART-splitting criterion is consistent and

asymptotically normal when cuts are limited to empirical quantiles

and the number of trees grows with n (A3).

2. The variance of p̂Mn,n(P) tends to zero.

The variance can be decomposed into two terms:

• the variance generated by the Monte-Carlo randomization, which

goes to 0 as the number of trees increases (A2).

• the variance of pn(P), which is a bagged estimate and thus an

infinite-order U-statistic. The result comes from Mentch and Hooker

[2016] since lim
n!1

an/n = 0 (A1).

10



Numerical experiments

Competitors:

• CART [Breiman et al., 1984]

• Classical rule learning: RIPPER [Cohen, 1995]

• Frequent pattern mining: CBA [Classification Based on Association

Rules, Liu et al., 1998], BRL [Bayesian Rule List, Letham et al.,

2015]

• Tree ensemble: RuleFit [Friedman and Popescu, 2008], Node

Harvest [Meinshausen, 2010].

Metrics:

• Accuracy/Error: 1-AUC

• Stability: Dice-Sorensen index

• Simplicity: Number of rules output by the procedure
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Accuracy

Figure 1: Model error (1-AUC) over a 10-fold cross-validation for UCI datasets.

Results are averaged over 10 repetitions of the cross-validation. Values within

10% of the minimum are displayed in bold, random forest is put aside. 12



Simplicity

Figure 2: Mean model size over a 10-fold cross-validation for UCI datasets.

Results are averaged over 10 repetitions of the cross-validation.
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Stability

Figure 3: Mean stability over a 10-fold cross-validation for UCI datasets.

Results are averaged over 10 repetitions of the cross-validation. Values within

10% of the maximum are displayed in bold. 14



Conclusion on SIRUS

• Output a small, stable, and predictive set of rules

• Predictive performances are on par with RF

• Stability and number of rules improved over state-of-the-art

algorithms

• Theoretical guarantees of stability for SIRUS

• Relies heavily on quantile discretization and a limited tree depth
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Post-hoc methods: Sobol indices

and Shapley e↵ects



Introduction - Industrial Context

A first interpretable approach: SIRUS

Post-hoc methods: Sobol indices and Shapley e↵ects

Introduction

MDA Theoretical Limitations

MDA definition

MDA convergence

Sobol-MDA

Shapley e↵ects
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MDA

• MDA [Breiman, 2001a]: built-in variable importance algorithm for

random forests

• MDA is used intensively

• MDA has flaws
• Poor understanding of the MDA: what is estimated ?

• Empirical studies show that the MDA is biased for dependent inputs

[Strobl et al., 2007, Gregorutti et al., 2017, Hooker and Mentch,

2019]

• Our objective [Bénard et al., 2021]
• Theoretical analysis of the MDA

• First convergence result for the original MDA [Ishwaran, 2007, Zhu

et al., 2015]

• Theoretical understanding of MDA bias

• Design of Sobol-MDA algorithm to fix the MDA flaws
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Random forests

• Regression setting

• input vector X = (X (1), . . . ,X (p)) 2 Rp

• output Y 2 R
• dataset Dn = {(Xi ,Yi ), i = 1, . . . , n},

where (Xi ,Yi ) ⇠ PX,Y .

• Random forest algorithm

• Aggregation of ⇥-random trees

⇥ = (⇥(S),⇥(V ))

• M: number of trees

• mM,n(X,⇥M): the forest estimate at X
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MDA principle

MDA principle:

decrease of accuracy of the forest when a variable is noised up

1. fit a random forest with Dn

2. compute the accuracy of the forest

3. permute randomly the values of a given input variable X
(j):

break the dependence between X
(j) and Y

4. compute the decrease of accuracy of the forest with the permuted

data

20
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MDA illustration

X
(1)

X
(2) . . . X (j) . . . X (p)

Y

2.1 4.3 . . . 0.1 . . . 2.6 2.3

1.7 4.1 . . . 9.2 . . . 3.8 0.4

3.4 9.2 . . . 3.2 . . . 3.6 10.2

5.6 1.2 . . . 8.2 . . . 4.2 9.1

8.9 6.8 . . . 6.7 . . . 2.9 4.5

Table 1: Example of the permutation of a dataset Dn for n = 5.
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Explained variance of Y = 16.4 Explained variance of Y = 13.7

MDA(X (j)) = 16.4� 13.7 = 2.7
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MDA illustration
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Table 1: Example of the permutation of a dataset Dn for n = 5.

Question: Can I use Dn to both fit the forest and compute accuracy ?

No: overfitting and inflated accuracy.

How to handle this in practice?
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MDA versions

The explained variance estimate of MDA algorithms di↵er across

implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

Out-of-bag (OOB) samples: Dn is bootstrap prior to the construction

of each tree, leaving aside a portion of Dn, which is not involved in the

tree growing and defines the “out-of-bag” sample.

MDA Version Package Error Data

Train-Test
scikit-learn

randomForestSRC
Forest Testing dataset

Breiman-Cutler
randomForest (normalized)

ranger / randomForestSRC
Tree OOB sample

Ishwaran-Kogalur randomForestSRC Forest OOB sample

Table 2: Summary of the di↵erent MDA algorithms.
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scikit-learn

randomForestSRC
Forest Testing dataset

Breiman-Cutler
randomForest (normalized)

ranger / randomForestSRC
Tree OOB sample

Ishwaran-Kogalur randomForestSRC Forest OOB sample

Table 2: Summary of the di↵erent MDA algorithms.
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Breiman-Cutler MDA

• i 2 {1, . . . , n} \⇥(S)
` = {2, 5}: OOB sample of the `-th tree

• Nn,` =
Pn

i=1 1i 6=⇥(S)
`
= 2: size of the OOB sample of the `-th tree

• Xi,⇡j` : i-th observation where the j-th component is permuted

across the OOB sample of the `-th tree

X
(1)

X
(2) . . . X (j) . . . X (p)

Y

2.1 4.3 . . . 0.1 . . . 2.6 2.3

1.7 4.1 . . . 9.2 . . . 3.8 0.4

3.4 9.2 . . . 3.2 . . . 3.6 10.2

5.6 1.2 . . . 8.2 . . . 4.2 9.1

8.9 6.8 . . . 6.7 . . . 2.9 4.5

\MDA
(BC)

M,n (X (j)) =
1

M

MX

`=1

1

Nn,`

nX

i=1

⇥

�
⇤
1
i /2⇥(S)

`
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� (Yi �mn(Xi ,⇥`))
2
⇤
1
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Inflated quadratic risk of the `-th tree where X
(j) is permuted
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Risks are computed over the OOB sample of each tree
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M

MX
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⇥
(Yi �mn(Xi,⇡j` ,⇥`))

2

� (Yi �mn(Xi ,⇥`))
2
⇤
1
i /2⇥(S)

`

Average over all trees
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A first interpretable approach: SIRUS

Post-hoc methods: Sobol indices and Shapley e↵ects
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Assumptions

(A1)

The response Y 2 R follows

Y = m(X) + "

where

• X = (X (1), . . . ,X (p)) 2 [0, 1]p

• X admits a density f such that c1 < f (x) < c2, with constants

c1, c2 > 0

• m is continuous

• the noise " is sub-Gaussian and centered
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Assumptions

(A2): the theoretical tree is consistent

(always true with slight modifications of the forest algorithm)

(A2)

The randomized theoretical CART tree built with the distribution of

(X,Y ) is consistent, that is, for all x 2 [0, 1]p, almost surely,

lim
k!1

�(m,A?
k(x,⇥)) = 0.

(A3): tree partition is not too complex with respect to n

(A3)

The asymptotic regime of an, the size of the subsampling without

replacement, and the number of terminal leaves tn is such that

an  n � 2, an/n < 1�  for a fixed  > 0, lim
n!1

an = 1, lim
n!1

tn = 1,

and lim
n!1

tn
(log(an))

9

an
= 0.
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MDA Convergence

Theorem (Bénard et al. [2021])

If Assumptions (A1), (A2), and (A3) are satisfied, then, for all M 2 N?

and j 2 {1, . . . , p} we have

\MDA
(BC)

M,n (X (j))
L1

�! E[(m(X)�m(X⇡j ))
2]

X⇡j : X where the j-th component is replaced by an independent copy, i.e.

X⇡j = (X (1), . . . ,X 0(j), . . . ,X (p))

Limit interpretation?
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Sensitivity analysis

V[Y ]

V["]

ST (1)
full ST (2)

full

Interactions

Dependence
ST (1) ST (2)

Figure 4: Standard and full total Sobol indices for Y = m(X (1),X (2)) + ".

Total Sobol index [Sobol, 1993]

ST
(1) =

E[V(m(X)|X(�1))]

V(Y )

Full total Sobol index [Mara et al.,

2015, Benoumechiara, 2019]

ST
(1)
full =

E[V(m(X⇡j )|X(�1))]

V(Y )
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MDA Decomposition

Proposition (Bénard et al. [2021])

If Assumptions (A1), (A2) and (A3) are satisfied, then for all M 2 N?

and j 2 {1, . . . , p} we have

\MDA
(BC)

M,n (X (j))
L1

�! V[Y ]⇥ ST
(j) +V[Y ]⇥ ST

(j)
full +MDA?(j)

3 .

The term MDA?(j)
3 is not an importance measure and is defined by

MDA?(j)
3 = E[(E[m(X)|X(�j)]� E[m(X⇡j )|X(�j)])2].
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MDA Decomposition

Proposition (Bénard et al. [2021])

If Assumptions (A1), (A2) and (A3) are satisfied, then for all M 2 N?

and j 2 {1, . . . , p} we have

(i) \MDA
(TT )

M,n (X (j))
L1

�! V[Y ]⇥ ST
(j) +V[Y ]⇥ ST

(j)
full +MDA?(j)

3

(ii) \MDA
(BC)

M,n (X (j))
L1

�! V[Y ]⇥ ST
(j) +V[Y ]⇥ ST

(j)
full +MDA?(j)

3 .

If additionally M �! 1, then

(iii) \MDA
(IK)

M,n(X
(j))

L1

�! V[Y ]⇥ ST
(j) +MDA?(j)

3 .
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Independent inputs

If inputs X are independent: MDA?(j)
3 = 0 and ST

(j) = ST
(j)
full .

Corollary (Bénard et al. [2021])

If X has independent components, and if Assumptions (A1)-(A3) are

satisfied, for all M 2 N?
and j 2 {1, . . . , p} we have

\MDA
(TT )

M,n (X (j))
L1

�! 2V[Y ]⇥ ST
(j)

\MDA
(BC)

M,n (X (j))
L1

�! 2V[Y ]⇥ ST
(j).

If additionally M �! 1, then

\MDA
(IK)

M,n(X
(j))

L1

�! V[Y ]⇥ ST
(j).

This Corollary completes the result from [Gregorutti, 2015].
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Additive regression function

If m is additive: MDA?(j)
3 = 0.

Corollary (Bénard et al. [2021])

If the regression function m is additive, and if Assumptions (A1)-(A3) are

satisfied, for all M 2 N?
and j 2 {1, . . . , p} we have

\MDA
(TT )

M,n (X (j))
L1

�! V[Y ]⇥ ST
(j) +V[Y ]⇥ ST

(j)
full

\MDA
(BC)

M,n (X (j))
L1

�! V[Y ]⇥ ST
(j) +V[Y ]⇥ ST

(j)
full .

If additionally M �! 1, then

\MDA
(IK)

M,n(X
(j))

L1

�! V[Y ]⇥ ST
(j).
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MDA summary

• When inputs X are dependent and have interactions, the MDA is

artificially inflated by the term MDA3 and is therefore misleading.

• MDA versions have di↵erent theoretical counterparts, and thus

di↵erent meanings: be careful when using forest packages !

• For variable selection, the total Sobol index is the relevant

component

V[Y ]⇥ ST
(j) +⇠⇠⇠⇠⇠⇠

V[Y ]⇥ ST
(j)
full +⇠⇠⇠⇠

MDA?(j)
3

• We develop the Sobol-MDA: a fast and consistent estimate of ST (j)

for random forests

33



MDA summary

• When inputs X are dependent and have interactions, the MDA is

artificially inflated by the term MDA3 and is therefore misleading.

• MDA versions have di↵erent theoretical counterparts, and thus

di↵erent meanings: be careful when using forest packages !

• For variable selection, the total Sobol index is the relevant

component

V[Y ]⇥ ST
(j) +⇠⇠⇠⇠⇠⇠

V[Y ]⇥ ST
(j)
full +⇠⇠⇠⇠

MDA?(j)
3

• We develop the Sobol-MDA: a fast and consistent estimate of ST (j)

for random forests

33



MDA summary

• When inputs X are dependent and have interactions, the MDA is

artificially inflated by the term MDA3 and is therefore misleading.

• MDA versions have di↵erent theoretical counterparts, and thus

di↵erent meanings: be careful when using forest packages !

• For variable selection, the total Sobol index is the relevant

component

V[Y ]⇥ ST
(j) +⇠⇠⇠⇠⇠⇠

V[Y ]⇥ ST
(j)
full +⇠⇠⇠⇠

MDA?(j)
3

• We develop the Sobol-MDA: a fast and consistent estimate of ST (j)

for random forests

33



MDA summary

• When inputs X are dependent and have interactions, the MDA is

artificially inflated by the term MDA3 and is therefore misleading.

• MDA versions have di↵erent theoretical counterparts, and thus

di↵erent meanings: be careful when using forest packages !

• For variable selection, the total Sobol index is the relevant

component

V[Y ]⇥ ST
(j) +⇠⇠⇠⇠⇠⇠

V[Y ]⇥ ST
(j)
full +⇠⇠⇠⇠

MDA?(j)
3

• We develop the Sobol-MDA: a fast and consistent estimate of ST (j)

for random forests

33



Introduction - Industrial Context

A first interpretable approach: SIRUS

Post-hoc methods: Sobol indices and Shapley e↵ects

Introduction

MDA Theoretical Limitations

MDA definition

MDA convergence

Sobol-MDA

Shapley e↵ects

34



Sobol-MDA

Principle: project the partition of each tree along the j-th direction to

remove X
(j) from the prediction process.

X
(1)

X
(2)

X

X
(1)

X
(2)

X

X(�j)

Figure 5: Partition of [0, 1]2 by a random tree (left side) projected on the

subspace span by X(�2) = X (1) (right side), for p = 2 and j = 2.

\S-MDAM,n(X
(j)) =

1

�̂2
Y

1

n

nX

i=1�
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Consistency of the Sobol-MDA

The Sobol-MDA recovers the appropriate theoretical counterpart for

variable selection: the total Sobol index

Theorem (Bénard et al. [2021])

If Assumptions (A1), (A2’), and (A3’) are satisfied, for all M 2 N?
and

j 2 {1, . . . , p}

\S-MDAM,n(X
(j))

p�! ST
(j).
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Sobol-MDA Experiments

Settings [Archer and Kimes, 2008, Gregorutti et al., 2017]

• p = 200 input variables

• 5 independent groups of 40 variables

• each group is a Gaussian vector, strongly correlated

• 1 variable from each group involved in m

m(X) = 2X (1) + X
(41) + X

(81) + X
(121) + X

(161).

• independent Gaussian noise with V["] = 10%V[Y ]

Y = m(X) + "

• n = 1000 observations

• M = 300 trees
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Sobol-MDA Experiments

\S-MDA

X(1) 0.035

X(161) 0.005

X(81) 0.004

X(121) 0.004

X(41) 0.002

X(179) 0.002

X(13) 0.001

X(25) 0.001

X(73) 0.001

X(155) 0.001

\BC-MDA/2V[Y ]

X(1) 0.048

X(25) 0.010

X(31) 0.008

X(14) 0.008

X(40) 0.007

X(3) 0.007

X(17) 0.006

X(26) 0.006

X(41) 0.006

X(121) 0.006

\IK-MDA/V[Y ]

X(1) 0.056

X(5) 0.009

X(81) 0.007

X(41) 0.005

X(161) 0.005

X(15) 0.005

X(121) 0.005

X(7) 0.005

X(4) 0.004

X(28) 0.004

Table 3: Sobol-MDA, normalized BC-MDA, and normalized IK-MDA estimates

with influential variables in blue.
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Additional Experiments

Additional experiments are available in Bénard et al. [2021]

(non-linear data with interactions and dependence)

• analytical example

• backward variable selection with real data
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Extension

Sobol-MDA can be associated with any black-box algorithm

• fit a black box f̂ on Dn

• generate a large sample D0
N with f̂

• run the Sobol-MDA with D0
N
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Definition of Shapley e↵ects

• Originally defined in economics and game theory [Shapley, 1953]

• Attribute the value produced by a joint team to its individual

members

• Di↵erence of produced value between a subset of the team and the

same subteam with an additional member (averaged over all possible

subteams).

• Adapted by Owen [2014] to variable importance in machine learning:

• member of the team = input variable

• value function = explained output variance
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Definition of Shapley e↵ects

Formally, the Shapley e↵ect of the j-th variable is defined by

Sh
?(X (j)) =

X

U⇢{1,...,p}\{j}

1

p

✓
p � 1

|U|

◆�1
V[E[Y |X(U[{j})]]�V[E[Y |X(U)]]

V[Y ]
.
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1. the computational complexity is exponential with the dimension p

2. V[E[Y |X(U)]] requires a fast and accurate estimate for all variable

subsets U ⇢ {1, . . . , p}
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1. the computational complexity is exponential with the dimension p

Literature: Monte-Carlo methods

2. V[E[Y |X(U)]] requires a fast and accurate estimate for all variable

subsets U ⇢ {1, . . . , p}
Literature: strong approximation of the conditional distributions
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SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:

1. sample many subsets U, typically a few hundreds, based on their

occurrence frequency p̂M,n(U) in the random forest

2. estimate V[E[Y |X(U)]] with the projected forest algorithm for all

selected U and their complementary sets {1, . . . , p} \ U: v̂M,n(U)

3. solve a weighted linear regression problem to recover Shapley e↵ects

ŜhMn,n by minimizing in �
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X(U)

Figure 6: Partition of [0, 1]2 by a random tree (left side) projected on the

subspace span by X(U) = X (1) (right side), for p = 2 and U = {1}.
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selected U and their complementary sets {1, . . . , p} \ U: v̂M,n(U)

3. solve a weighted linear regression problem to recover Shapley e↵ects

ŜhMn,n by minimizing in �

`M,n(�) =
1

K

X

U2Un,K

w(U)

p̂M,n(U)
(v̂M,n(U)� �T

I (U))2,

where w(U) = p�1

( p
|U|)|U|(p�|U|) and I (U) is the binary vector of

dimension p where the j-th component takes the value 1 if j 2 U

and 0 otherwise.
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SHAFF consistency

(A4)

The number of Monte-Carlo sampling Kn and the number of trees Mn

grow with n, such that Mn �! 1 and n.Mn/Kn �! 0.

Theorem

If Assumptions (A1), (A2’), (A3’), and (A4) are satisfied, then SHAFF is

consistent, that is

ŜhMn,n
p�! Sh?.
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Conclusion

• Strong connections between the MDA and Sobol indices

• MDA does not target the appropriate quantity

• Sobol-MDA fixes the flaws of original MDA

• R/C++ package SobolMDA, available online on Gitlab

(https://gitlab.com/drti/sobolmda), and based on the package

ranger

• SHAFF: generalization of projected random forests to Shapley e↵ects

• R/C++ package shaff, available online on Gitlab

(https://gitlab.com/drti/sha↵), and based on the package ranger
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Questions ?
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Sparsity / interaction order

Interpretable without sparsity:

• Philosophical question?

• RF do not work well in the additive nonsparse context

• Therefore SIRUS does not work either

Sparsity

• SIRUS inherits sparsity properties of RF

• Sparsity has an impact on the required number of rules (which is automatically chosen
based on an accuracy value).

Interaction order:

• RF can miss complex signals

• Sirus can detect only interactions of order two (see IRF and signed iterative RF)

• Can we adapt SIRUS to handle high-level interactions (they are masked by low-level
interactions in the current version)? Modify the probability to encourage high-level
interactions.

RF modification:

• Can we adapt RF to predict only when the output is larger than a threshold?

• Can we adapt the splitting criterion to focus on these regions (by adapting the pinball loss
used for conditional quantiles)?
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