Estimation de paramètres avec le Calcul Bayésien Approché (ABC)

Maxime Lenormand

Journées Réseau Mexico, 22 Novembre 2012 NANTES Ifremer

Laboratoire d'Ingénierie pour les Systèmes Complexes Travail en commun avec **Franck Jabot** et **Guillaume Deffuant**

Plan

- Introduction
- ▶ Le modèle SimVillages
- Approximate Bayesian Computation
- Adaptive Approximate Bayesian Computation
- Résultats
- Conclusion et perspectives

Introduction

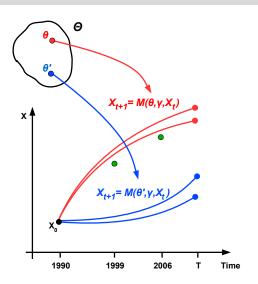
Modèle de microsimulation dynamique

- Modèle individu-centré
- Stochastique
- Espace des paramètres de grande dimension
- Coût computationnel élevé par simulation

Estimer la valeur des paramètres

- Calibrer le modèle
- Comprendre son comportement
- Réaliser une analyse d'incertitude
- Valider le modèle

Introduction

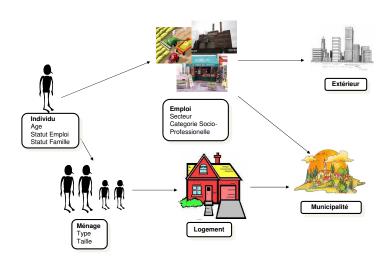


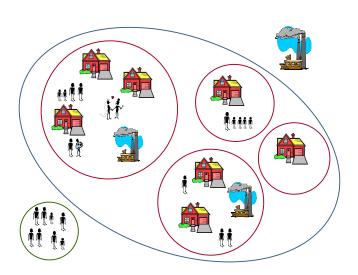
Données D ; On cherche à estimer un paramètre θ

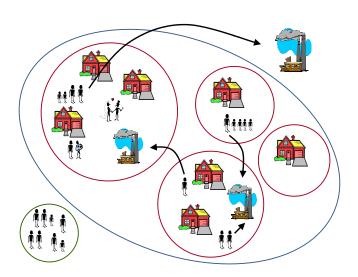
Plan

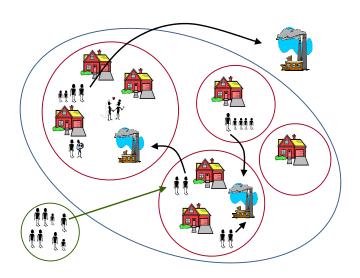
- Introduction
- ▶ Le modèle SimVillages
- Approximate Bayesian Computation
- Adaptive Approximate Bayesian Computation
- Résultats
- Conclusion et perspectives

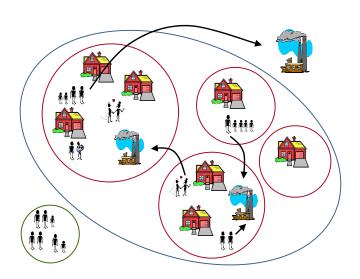
- Modèle d'évolution municipale de :
 - ▶ la population (taille et distribution des âges)
 - la distribution des activités et des logements
 - l'offre d'emplois liés à la présence de population
- en interaction avec les autres municipalités d'une région
- sous l'effet de scénario :
 - d'offre municipales d'emplois et de logements
 - donnant les contraintes liées à l'évolution du contexte
- ⇒ Pour répondre à la question du devenir de la présence de population dans le rural

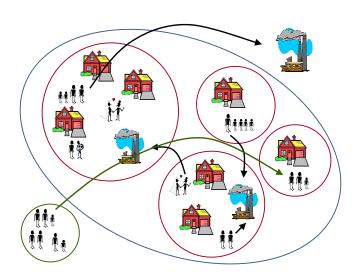


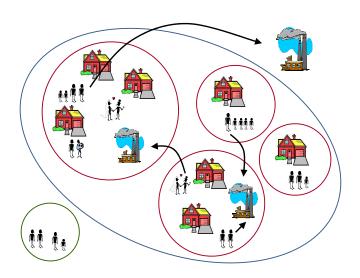


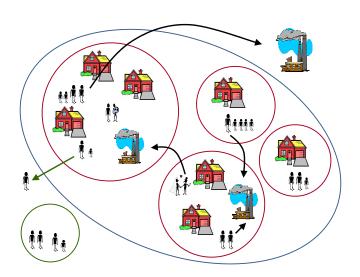


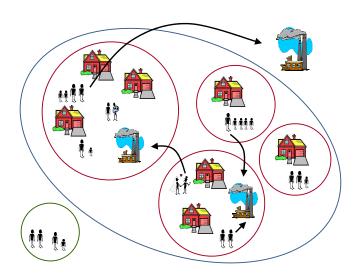


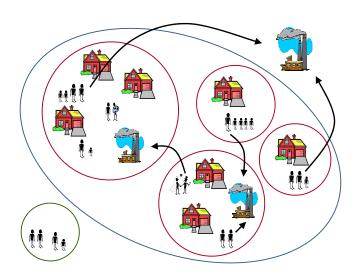


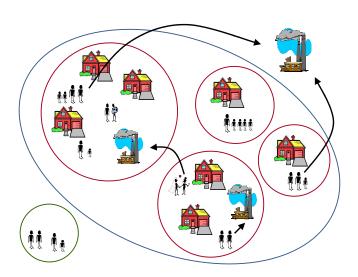




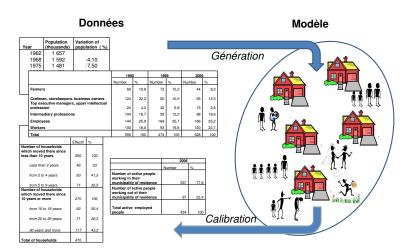












Caractéristiques du modèle

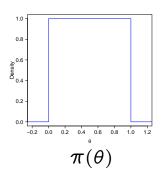
- 260 communes (Cantal)
- 8 paramètres (Ex: Nombre moyen d'enfants par femme)
- 6 indicateurs (Ex: Pyramide des âges)
- Année de départ : 1990
- Années de calibration : 1999 et 2006
- Temps moyen par simulation : 1 minute

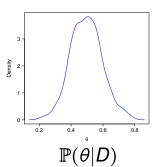
Comment estimer les paramètres ?

Plan

- Introduction
- ▶ Le modèle SimVillages
- Approximate Bayesian Computation
- Adaptive Approximate Bayesian Computation
- Résultats
- Conclusion et perspectives

$$\mathbb{P}(\theta|D) = \frac{\mathbb{P}(D|\theta)\pi(\theta)}{\mathbb{P}(D)}$$





Pourquoi l'inférence Bayésienne ?

- Estimation d'une densité
- Théorie mathématique

Pourquoi l'inférence Bayésienne?

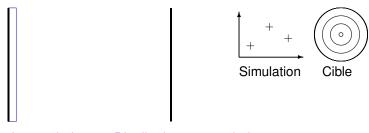
- Estimation d'une densité
- Théorie mathématique

Problèmes

- Calcul de la vraisemblance $L(\theta|D) = \mathbb{P}(D|\theta)$?
- Comment faire lorsque ce calcul est trop difficile ou trop coûteux ?

14 / 36

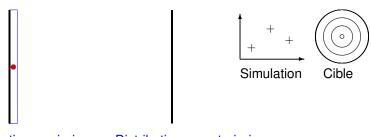
- Simuler $\theta^* \sim \pi(\theta)$
- ② Simuler $D' \sim f(\cdot | \theta^*)$
- **3** Si D' = D, accepter θ^* , sinon le rejeter
- Répéter jusqu'à ce qu'un échantillon de la taille désirée soit obtenu



Distribution a priori $\pi(\theta)$

Distribution a posteriori $\mathbb{P}(D' = D|\theta)\pi(\theta)$

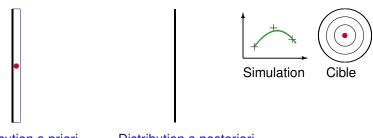
- Simuler $\theta^* \sim \pi(\theta)$
- ② Simuler $D' \sim f(\cdot | \theta^*)$
- Si D' = D, accepter θ^* , sinon le rejeter
- Répéter jusqu'à ce qu'un échantillon de la taille désirée soit obtenu



Distribution a priori $\pi(\theta)$

Distribution a posteriori $\mathbb{P}(D' = D|\theta)\pi(\theta)$

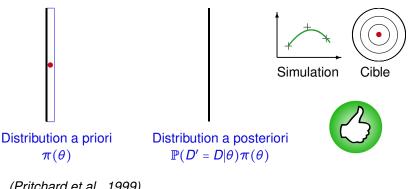
- Simuler $\theta^* \sim \pi(\theta)$
- ② Simuler $D' \sim f(\cdot | \theta^*)$
- **3** Si D' = D, accepter θ^* , sinon le rejeter
- Répéter jusqu'à ce qu'un échantillon de la taille désirée soit obtenu



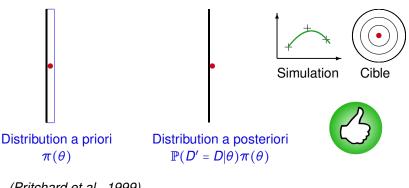
Distribution a priori $\pi(\theta)$

Distribution a posteriori $\mathbb{P}(D' = D|\theta)\pi(\theta)$

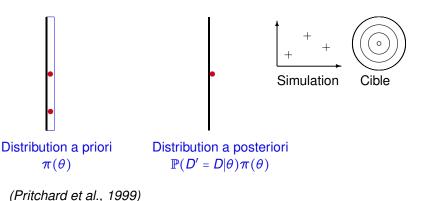
- Simuler $\theta^* \sim \pi(\theta)$
- Simuler $D' \sim f(\cdot | \theta^*)$
- Si D' = D, accepter θ^* , sinon le rejeter
- Répéter jusqu'à ce qu'un échantillon de la taille désirée soit obtenu



- Simuler $\theta^* \sim \pi(\theta)$
- Simuler $D' \sim f(\cdot | \theta^*)$
- Si D' = D, accepter θ^* , sinon le rejeter
- Répéter jusqu'à ce qu'un échantillon de la taille désirée soit obtenu



- Simuler $\theta^* \sim \pi(\theta)$
- ② Simuler $D' \sim f(\cdot | \theta^*)$
- Si D' = D, accepter θ^* , sinon le rejeter
- Répéter jusqu'à ce qu'un échantillon de la taille désirée soit obtenu

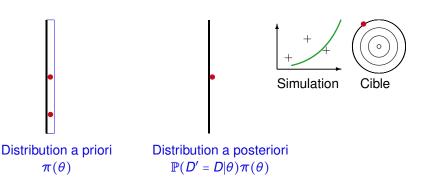


Maxime Lenormand ABC Journées Réseau Mexico 15 / 36

- Simuler $\theta^* \sim \pi(\theta)$
- ② Simuler $D' \sim f(\cdot | \theta^*)$

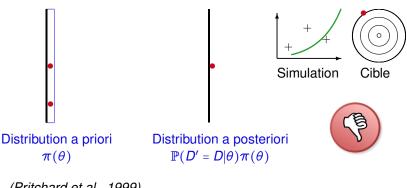
(Pritchard et al., 1999)

- **3** Si D' = D, accepter θ^* , sinon le rejeter
- Répéter jusqu'à ce qu'un échantillon de la taille désirée soit obtenu

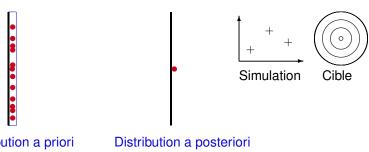


Maxime Lenormand ABC Journées Réseau Mexico 15 / 36

- Simuler $\theta^* \sim \pi(\theta)$
- Simuler $D' \sim f(\cdot | \theta^*)$
- Si D' = D, accepter θ^* , sinon le rejeter
- Répéter jusqu'à ce qu'un échantillon de la taille désirée soit obtenu



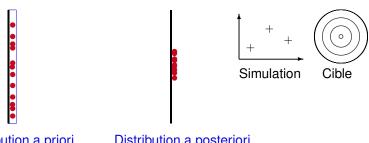
- Simuler $\theta^* \sim \pi(\theta)$
- Simuler $D' \sim f(\cdot | \theta^*)$
- Si D' = D, accepter θ^* , sinon le rejeter
- Répéter jusqu'à ce qu'un échantillon de la taille désirée soit obtenu



Distribution a priori $\pi(\theta)$

 $\mathbb{P}(D' = D|\theta)\pi(\theta)$

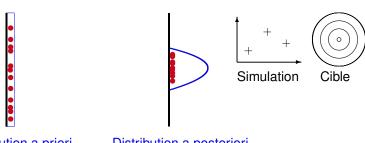
- Simuler $\theta^* \sim \pi(\theta)$
- ② Simuler $D' \sim f(\cdot | \theta^*)$
- Si D' = D, accepter θ^* , sinon le rejeter
- Répéter jusqu'à ce qu'un échantillon de la taille désirée soit obtenu



Distribution a priori $\pi(\theta)$

Distribution a posteriori $\mathbb{P}(D' = D|\theta)\pi(\theta)$

- Simuler $\theta^* \sim \pi(\theta)$
- ② Simuler $D' \sim f(\cdot | \theta^*)$
- Si D' = D, accepter θ^* , sinon le rejeter
- Répéter jusqu'à ce qu'un échantillon de la taille désirée soit obtenu



Distribution a priori $\pi(\theta)$

Distribution a posteriori $\mathbb{P}(D' = D|\theta)\pi(\theta)$

Deux approximations de D' = D

- $\rho(D', D) \leq \epsilon$
- $\rho(S(D'), S(D)) \leq \epsilon$

Deux approximations de D' = D

- $\rho(D', D) \leq \epsilon$
- $\rho(S(D'), S(D)) \leq \epsilon$

$$\mathbb{P}(
ho(S(D'),S(D))\leq\epsilon| heta)\pi(heta)$$

Deux approximations de D' = D

- $\rho(D', D) \leq \epsilon$
- $\rho(S(D'), S(D)) \leq \epsilon$

$$\mathbb{P}(\rho(S(D'), S(D)) \le \epsilon | \theta) \pi(\theta)$$

Les choix de l'ABC

- € ?
- ρ?
- S?

L'ABC dans la littérature (non exhaustif)

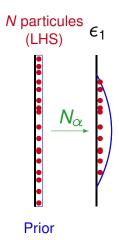
- Ajustement des paramètres (Beaumont et al. (2002))
- ABC-MCMC (Marjoram et al. (2003))
- ABC-PRC (Sisson et al. (2007))
- ABC-MCMC (Wegmann et al. (2009))
- Choix de S (Joyce et Marjoram (2008))
- ABC-PMC (Beaumont et al. (2009); Toni et al. (2009))
- Ajustement des paramètres (Blum et françois (2010))
- ABC-RSMC (Drovandi et Pettitt (2011))
- ABC-SMC (DelMoral et al. (2012))
- Choix de S (Fearnhead et Prangle (2012))

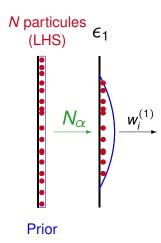
Plan

- Introduction
- ▶ Le modèle SimVillages
- Approximate Bayesian Computation
- Adaptive Approximate Bayesian Computation
- Résultats
- Conclusion et perspectives

Prior

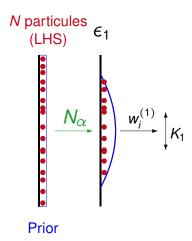
```
N particules
   (LHS)
   Prior
```

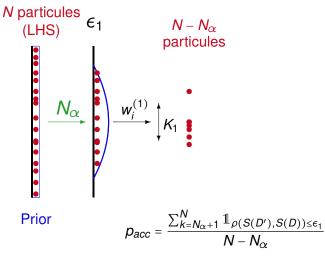


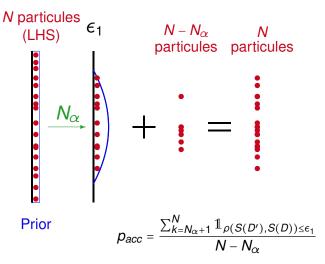


(Lenormand et al. (2012))

Maxime Lenormand ABC Journées Réseau Mexico 19 / 36

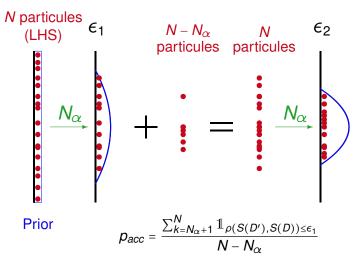


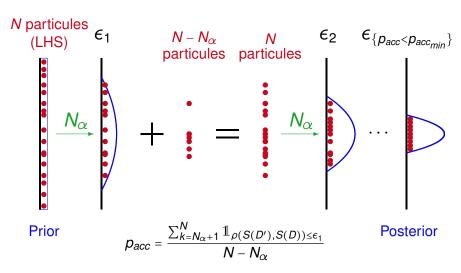




(Lenormand et al. (2012))

Maxime Lenormand ABC Journées Réseau Mexico 19 / 36





(Lenormand et al. (2012))

Maxime Lenormand ABC Journées Réseau Mexico 19 / 36

Plan

- Introduction
- ▶ Le modèle SimVillages
- Approximate Bayesian Computation
- Adaptive Approximate Bayesian Computation
- Résultats
- Conclusion et perspectives

Paramètres	Description	Etendue
θ_1	Nombre d'enfants (pente)	[0, 0.15]
$ heta_2$	Nombre d'enfants (intersection)	[0.5, 3]
$ heta_3$	Indice de satisfaction du logement	[0, 0.2]
θ_4	Probabilité de se mettre en couple	[0, 1]
$ heta_5$	Nombre d'essais pour se mettre en couple	[0, 20]
$ heta_6$	Probabilité de divorcer	[0, 0.05]
$ heta_7$	Seuil de proximité	[[0, 50]]
θ_8	Satisfaction de la demande de logement	[0, 1]

Maxime Lenormand ABC Journées Réseau Mexico 21 / 36

Résultats Statistiques Résumantes

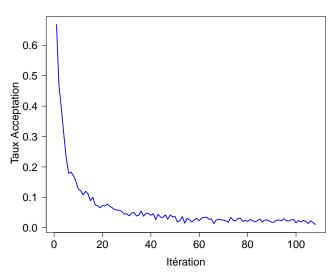
- 6 statistiques (3 en 1999 et 3 en 2006)
- Cible : $\sum_{k=1}^{6} \frac{\rho_k(S_k, S_k')}{\mu_k}$
- ullet $\mu_{\it k}$: distance moyenne obtenue avec les $\it N$ premiers points

Statistique	Description	Distance
S_1	Pyramide des âges	\mathbb{L}_1
S_2	Nombre d'habitants par commune	\mathbb{L}_1
S_3	Solde Migratoire	\mathbb{L}_1

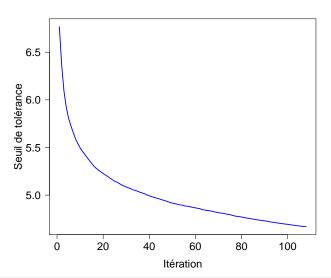
Résultats Implémentation et exécution

- N = 2000
- $\alpha = 0.5$
- Language : JAVA
- Logiciel : OpenMOLE
- Cluster de 24 noeuds
- Durée : 4 jours

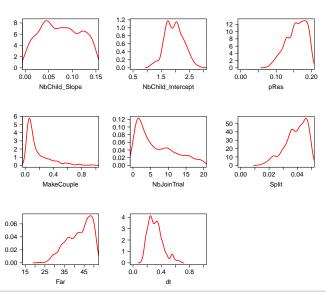
Résultats Taux d'acceptation



Résultats Seuil de tolérance

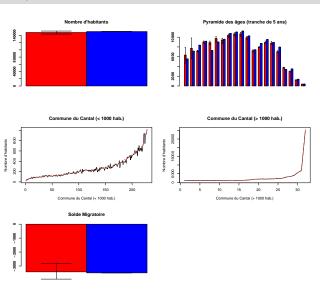


Résultats Densité a posteriori



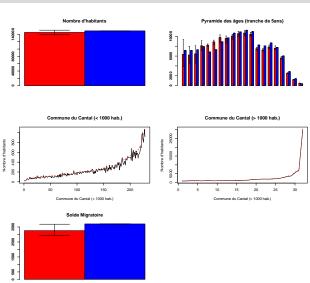
Maxime Lenormand ABC Journées Réseau Mexico 26/36

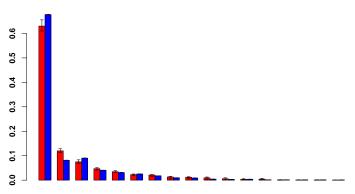
Résultats Statistiques Résumantes 1999



Maxime Lenormand ABC Journées Réseau Mexico 27 / 36

Résultats Statistiques Résumantes 2006





Plan

- Introduction
- Le modèle SimVillages
- Approximate Bayesian Computation
- Adaptive Approximate Bayesian Computation
- Résultats
- Conclusion et perspectives

Conclusion et perspectives

Conclusion

- Minimisation du nombre de simulations
- ullet Détermination "en ligne" de ϵ
- Calibration de SimVillages avec l'ABC

Perspectives

- Choix des statistiques guidé par une analyse de sensibilité
- ABC versus Optimisation
- Validation/Prediction

R package

Try it now! > install.packages("EasyABC")

About EasyABC

The package EasyABC enables to perform efficient approximate bayesian computation (ABC) sampling schemes by launching a series of simulations of a computer code from the R platform, and to retrieve the simulation outputs in an appropriate format for postprocessing treatments.

Package maintainer: Nicolas Dumoulin

Developers: Franck Jabot, Thierry Faure, Nicolas Dumoulin

News

- 11/20/2012 EasyABC 1.0 is now available on CRAN.
- 11/13/2012 EasyABC is now hosted on R-Forge.
- 11/06/2012 First commit of EasyABC

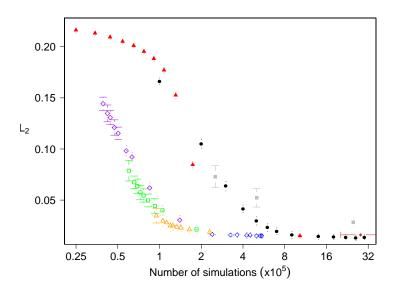
R package

EasyABC

Algorithme

- Algorithme de réjection
 - Pritchard et al. (1999)
- Algorithme séquentiel
 - ▶ Beaumont et al. (2009)
 - Drovandi & Pettitt (2011)
 - Del Moral et al. (2012)
 - Lenormand et al. (2012)
- Algorithme MCMC
 - Marjoram et al. (2003)
 - Wegmann et al. (2009)

R package



OpenMOLE

