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Motivations of MDS and other distance methods

Given a sample of n high-dimensional and/or complicated ”objects” x1, . . . , xn (say in a
set E , e.g. E ⊂ Rp with p >> 1), and a ”distance” (or similarity measure) on E , how to
summarize this sample using low-dimensional, visualizable, representations?

A few applications of distance methods (dixit Wikipedia!)

Archeology: grouping items found in different search places into objects from the
same period/place/dynasty

Biology: constructing a phylogenetic tree based on sequences

Marketing: representing preferences and perceptions of customers

Geostatistics: diverse appl., e.g. modeling the variability of geological facies. . .
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Motivating geostatistical application

First question: how to select a few ”representative ones”?

End motivation: which one(s) correspond(s) best to reality?
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Outline

1 Classical multidimensional scaling: background

2 An application of MDS in stochastic hydrology

3 Proxy-based kriging and the ProKSI algorithm
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MDS consists in using pairwise distances (or dissimilarities) to set up an approximate
representation of the xi ’s in a low-dimensional Euclidean space.

Definition

An (n × n) matrix D is called a distance matrix if it is symmetric and

di,i = 0, di,j ≥ 0 i 6= j

Starting with a distance matrix D, MDS aims at finding points u1, . . . , un of the
k -dimensional Euclidean space such that the distance matrix with entries

dRk (ui , uj ),

where dRk is the Euclidean distance over Rk , is close (in some sense) to D.
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How does it work? Some theoretical results

Definition

A distance matrix D is called Euclidean if ∃ points u1, . . . , un in a Euclidean space Rk

(for some k ) whose interpoint distances are given by D:

d2
i,j = (ui − uj )

T (ui − uj )

Let us set a few notations. A distance matrix D being fixed, let A be defined by

ai,j = −1
2

d2
i,j

Furthermore, set

B = HAH

where H = I− 1
n 11T is the (n × n) centring matrix.
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How does it work? Some theoretical results

Theorem

D is Euclidean if and only if B is positive semi-definite (p.s.d.). In particular:

a) If D is a matrix of Euclidean interpoint distances for a configuration
{u1, . . . , un} ∈ (Rk )n, then

bi,j = (ui − ū)T (uj − ū)

whereof B = (HU)(HU)T ≥ 0.

b) If B is p.s.d. of rank k , denote v1, . . . , vk its k first eigenvectors,
normalized by their corresponding eigenvalues λ1, . . . , λk > 0. Then
the points ui = (v1,i , . . . , vk,i ) ∈ Rk (1 ≤ i ≤ n) have interdistances
given by D.

K.V. Mardia, J.T. Kent, and J.M. Bibby

Multivariate Analysis (1979)

david.ginsbourger@stat.unibe.ch Distance-based methods 10 Avril 2013 10 / 38



How does it work? Some theoretical results

Theorem

D is Euclidean if and only if B is positive semi-definite (p.s.d.). In particular:

a) If D is a matrix of Euclidean interpoint distances for a configuration
{u1, . . . , un} ∈ (Rk )n, then

bi,j = (ui − ū)T (uj − ū)
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whereof B = (HU)(HU)T ≥ 0.

b) If B is p.s.d. of rank k , denote v1, . . . , vk its k first eigenvectors,
normalized by their corresponding eigenvalues λ1, . . . , λk > 0. Then
the points ui = (v1,i , . . . , vk,i ) ∈ Rk (1 ≤ i ≤ n) have interdistances
given by D.

K.V. Mardia, J.T. Kent, and J.M. Bibby

Multivariate Analysis (1979)

david.ginsbourger@stat.unibe.ch Distance-based methods 10 Avril 2013 10 / 38



A first example: US Flying Mileage

Atl Chi Den Hou LA Mia NY SF Sea DC
Atl 0 587 1212 701 1936 604 748 2139 2182 543
Chi 587 0 920 940 1745 1188 713 1858 1737 597
Den 1212 920 0 879 831 1726 1631 949 1021 1494
Hou 701 940 879 0 1374 968 1420 1645 1891 1220
LA 1936 1745 831 1374 0 2339 2451 347 959 2300
Mia 604 1188 1726 968 2339 0 1092 2594 2734 923
NY 748 713 1631 1420 2451 1092 0 2571 2408 205
SF 2139 1858 949 1645 347 2594 2571 0 678 2442
Sea 2182 1737 1021 1891 959 2734 2408 678 0 2329
DC 543 597 1494 1220 2300 923 205 2442 2329 0

Can we recover a map of the USA from that distance matrix?
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Source: Click here (website in French! :-)

D <- read.csv2("FlyingMileage.csv")

library(MASS)
res <- cmdscale(D[,2:11])

Y <- res[,2]
X <- res[,1]

plot(X,Y,type="p")
text(X,Y,D[,1],pos=1,cex=0.8)
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How does it work? A practical algorithm

Given a distance matrix D (Euclidean or not), a classical solution to the MDS problem
in p dimensions is summarized below:

a) Form D construct A = (− 1
2 d2

i,j )

b) Obtain B with elements bi,j = ai,j − āi,· − ā·,j +−ā·,·

c) Find the p largest eigenvalues of B, and the corresponding
(normalized) eigenvectors v1, . . . , vp.

d) The required points are given by ui = (v1,i , . . . , vp,i ) ∈ Rp (1 ≤ i ≤ n)

K.V. Mardia, J.T. Kent, and J.M. Bibby

Multivariate Analysis (1979)
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A second (historical) example: Ekman’s color data

Ekman (1954) presents similarities for 14 colors (wavelengths from 434 to 674 nm).

Similarities are based on a rating by 31 subjects. Each pair of colors was rated on a
5-point scale (0 = no similarity up to 4 = identical).

J. de Leeuw, P. Mair

Multidimensional Scaling Using Majorization: SMACOF in R

Journal of Statistical Software (2009)
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library("smacof") ; data("ekman")
D <- sim2diss(ekman, method = 1)
plot(smacofSym(D, metric = FALSE), main = "MDS Eckman Data")
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Outline

1 Classical multidimensional scaling: background

2 An application of MDS in stochastic hydrology

3 Proxy-based kriging and the ProKSI algorithm
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Set-up of the forward flow simulation

We now focus on numerical simulations taking a parameter field (or map, denoted by
x ∈ E) as input and delivering a functional output:

f : x ∈ E −→ fx (·) ∈ F

Multiple parameter fields may be candidate to model the subsurface . . .
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16 among 1000 facies (multipoints simulations)

The candidate maps are noted xi (1 ≤ i ≤ n). Here n = 1000.
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Corresponding distribution of outputs

How to capture the variability of the output relying on a few runs only?
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Key idea of Scheidt et al.: using degraded simulations

If simulating the response precisely for the 1000 maps is a priori too long, doing
rougher (proxy) simulations for all of them may be affordable.
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Modeling

The proxy simulator is denoted by p:

p : x ∈ E −→ px (·) ∈ F

E is equipped with a (pseudo-)distance:

d2(x , y) :=

∫ Tmax

Tmin

(px (t)− py (t))2 dt

We call D the n × n matrix of (pseudo-)distances2 between the xi ’s.
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Proxy-based MDS

A clustering method allows defining a design of experiments reflecting the diversity of
the n maps, according to the proxy pseudo-distance.
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Some references on proxy-based distance methods

C. Scheidt, J. Caers

Representing spatial uncertainty using distances and kernels
Mathematical Geosciences 41 (4), 397-419

C. Scheidt, J. Caers

Uncertainty Quantification in Reservoir Performance Using Distances and Kernel Methods–Application to
a West Africa Deepwater Turbidite Reservoir
SPE Journal 14 (4), 680-692
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Inverse problem: identification of geological facies

One measures a response curve
after a fluid injection at a boundary.
A similar curve is then simulated for
the candidate x ’s.

Comparing observed and simulated
curves, one gets an idea of which
parameter fields are ”realistic” . . .
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Modeling

The reference curve is called fref

The objective function to be minimized is called g:

g(x) :=

∫ Tmax

Tmin

(fx (t)− fref(t))2 dt

Reminder: The candidate maps are noted xi (1 ≤ i ≤ n). Here n = 1000.

Problem: find, in a restricted number of evaluations (each simulation being very time
consuming), as many xi ’s as possible with small values of g(xi ).
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Initial design of experiments

 
50 proxys 50 Observations 

An initial design is obtained by using Scheidt and Caers’ approach.
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Transformation of the objective function

Histogram of G before transformation

G

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8
Chi−Square denstiy

Histogram of G after transformation

G^aStar

D
en

si
ty

0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 Gaussian denstiy

david.ginsbourger@stat.unibe.ch Distance-based methods 10 Avril 2013 28 / 38



Proxy-based kriging

Covariance kernel used

k(x , y) := σ2 exp
(
− 1
θ2

∫ T

0
(p(x , t)− p(y , t))2dt

)
+ τ 21x=y

Why is this kernel an admissible covariance over E × E?

Proposition

Let E and F be two arbitrary spaces. Given a positive (semi-)definite kernel kF on
F × F, the following kernel kE :

kE (x , y) := kF (p(x), p(y))

is positive (semi-)definite over E × E, whatever the function p : E −→ F.

david.ginsbourger@stat.unibe.ch Distance-based methods 10 Avril 2013 29 / 38



Proxy-based kriging

Covariance kernel used

k(x , y) := σ2 exp
(
− 1
θ2

∫ T

0
(p(x , t)− p(y , t))2dt

)
+ τ 21x=y

Why is this kernel an admissible covariance over E × E?

Proposition

Let E and F be two arbitrary spaces. Given a positive (semi-)definite kernel kF on
F × F, the following kernel kE :

kE (x , y) := kF (p(x), p(y))

is positive (semi-)definite over E × E, whatever the function p : E −→ F.

david.ginsbourger@stat.unibe.ch Distance-based methods 10 Avril 2013 29 / 38



Implementation (transformation apart)
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Estimation of kriging covariance parameters
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Validation of the Kriging model
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Expected Improvement in MDS space
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Main loop of the ProKSI Algorithm
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ProKSI Algorithm: Results based on 100 references
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After 43 iterations, the global minimizer was visited in more than 50% of the cases.
The performances are significantly better with transformation.
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ProKSI Algorithm: Results based on 100 references
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In 75 iterations of the (EI-60) strategy developed during B. Rosspopoff’s internship, 25
of the 30 best maps are recovered (in median).
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Conclusion and perspectives

For more detail, see also:

D. G., B. Rosspopoff, G. Pirot, N. Durrande, and P. Renard

Distance-based Kriging relying on proxy simulations for inverse conditioning (2013)
Advances in Water Resources (52), 275–291

A few take home messages

Distance methods deserve to be known; they are simple and useful!

Distances can be adapted to the problem at hand; versatile methods . . . Further
distance methods available (Clustering, non-metric MDS, etc.).

Kriging and kriging-based optimization/inversion strategies are applicable in
arbitrary dimensions provided that:

a) A suitable covariance kernel is available (or can be found)
b) The search is limited to a discrete subset of candidate inputs
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