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Partly based on a paper with high-quality co-authors!

@ Bastien Rosspopoff (was at Uni Bern)
@ Guillaume Pirot (Uni Neuchatel)
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Motivations of MDS and other distance methods

Given a sample of n high-dimensional and/or complicated "objects” xi, ..., X» (say in a
set E, e.g. E C R? with p >> 1), and a "distance” (or similarity measure) on E, how to
summarize this sample using low-dimensional, visualizable, representations?



Motivations of MDS and other distance methods

Given a sample of n high-dimensional and/or complicated "objects” xi, ..., X» (say in a
set E, e.g. E C R? with p >> 1), and a "distance” (or similarity measure) on E, how to
summarize this sample using low-dimensional, visualizable, representations?

A few applications of distance methods (dixit Wikipedia!)
@ Archeology: grouping items found in different search places into objects from the
same period/place/dynasty
@ Biology: constructing a phylogenetic tree based on sequences

@ Marketing: representing preferences and perceptions of customers

@ Geostatistics: diverse appl., e.g. modeling the variability of geological facies. ..




Motivating geostatistical application

Facies realization 052 Facies realization 307 Facies realization 403 Facies realization 428

Facies realization 521
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Motivating geostatistical application

Facies realization 052 Facies realization 307 Facies realization 403

Facies realization 428

Facies realization 521

First question: how to select a few "representative ones”?
End motivation: which one(s) correspond(s) best to reality?
=} F = = E DA
~ davidginsbourger@statunibech ~ Distance-basedmethods | 10Awil2013  5/38



Outline

o Classical multidimensional scaling: background
e An application of MDS in stochastic hydrology

e Proxy-based kriging and the ProKSI algorithm
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o Classical multidimensional scaling: background



MDS consists in using pairwise distances (or dissimilarities) to set up an approximate
representation of the x;’s in a low-dimensional Euclidean space.

Definition

An (n x n) matrix D is called a distance matrix if it is symmetric and

d;=0, d;>0i#]




MDS consists in using pairwise distances (or dissimilarities) to set up an approximate
representation of the x;’s in a low-dimensional Euclidean space.

Definition
An (n x n) matrix D is called a distance matrix if it is symmetric and

d;=0, d;>0i#]

Starting with a distance matrix D, MDS aims at finding points us, . .., u, of the
k-dimensional Euclidean space such that the distance matrix with entries

Ok (Ui, Uj),

where d;« is the Euclidean distance over R¥, is close (in some sense) to D.



How does it work? Some theoretical results
Definition

A distance matrix D is called Euclidean if 3 points uy,
(for some k) whose interpoint distances are given by D:

., Un in a Euclidean space R*
dfy = (U — )" (ui — )




How does it work? Some theoretical results

Definition

A distance matrix D is called Euclidean if 3 points us, ..., U, in a Euclidean space R*
(for some k) whose interpoint distances are given by D:

dfy = (Ui —u) (U — )

Let us set a few notations. A distance matrix D being fixed, let A be defined by

2
aj = _édi,j
Furthermore, set
B = HAH
where H=1- 1511 T is the (n x n) centring matrix.



Theorem

How does it work? Some theoretical resulis

D is Euclidean if and only if B is positive semi-definite (p.s.d.). In particular:




How does it work? Some theoretical resulis

Theorem

D is Euclidean if and only if B is positive semi-definite (p.s.d.). In particular:

{U1,.

a) If D is a matrix of Euclidean interpoint distances for a configuration
.., Up} € (RF)", then

bij = (u -

)" (y - )
whereof B = (HU)(HU)T > 0.

o =
Distance-based methods

Qe




How does it work? Some theoretical results

Theorem
D is Euclidean if and only if B is positive semi-definite (p.s.d.). In particular:

a) If D is a matrix of Euclidean interpoint distances for a configuration
{uy,...,un} € (RM)", then
b= (u— )" (4 — )
whereof B = (HU)(HU)" > 0.
b) If Bis p.s.d. of rank k, denote v, ..., v its k first eigenvectors,
normalized by their corresponding eigenvalues Ay,..., Ax > 0. Then

the points u; = (v1,j, ..., Vk,i) € R* (1 <i < n) have interdistances
given by D.

ﬁ K.V. Mardia, J.T. Kent, and J.M. Bibby
Multivariate Analysis (1979)
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Can we recover a map of the USA from that distance matrix?
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Source: Click here (website in French! :-)

D <- read.csv2("FlyingMileage.csv")

o
8 e o
Mia Hou
8
— o
N LA
library (MASS) o
res <- cmdscale(D[,2:11]) & 7 °
L=}
Al sF
Y <- res[,2] > o °
X <- res[,1] Den
(=)
o |
o™
plot (X,Y, type="p") !
text (X,Y,D[,1],pos=1,cex=0.8) i DOC CT”
[s]
o
o | NY o]
o T T T T T T
-1000 -500 0 500 1000 1500


http://geai.univ-brest.fr/~carpenti/2006-2007/Documents-R/MDS-simple.html

How does it work? A practical algorithm

Given a distance matrix D (Euclidean or not), a classical solution to the MDS problem
in p dimensions is summarized below:

a) Form D construct A = (—5d?))

b) Obtain B with elements b;; = a;; — a,. —a.; + —a.,

c) Find the p largest eigenvalues of B, and the corresponding
(normalized) eigenvectors vy, ..., Vp.

d) The required points are given by u; = (v1,j,...,Vpi) ERP (1 < i< n)

ﬁ K.V. Mardia, J.T. Kent, and J.M. Bibby
Multivariate Analysis (1979)



A second (historical) example: Ekman’s color data

Ekman (1954) presents similarities for 14 colors (wavelengths from 434 to 674 nm).

[
400 nm 500 nm 600 nm 700 nm

Similarities are based on a rating by 31 subjects. Each pair of colors was rated on a
5-point scale (0 = no similarity up to 4 = identical).

@ J. de Leeuw, P. Mair
Multidimensional Scaling Using Majorization: SMACOF in R
Journal of Statistical Software (2009)



MDE Eckman Data
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Configurations D1
library ("smacof") ; data("ekman")
D <- sim2diss (ekman, method = 1)
plot (smacofSym (D, metric = FALSE), main = "MDS Eckman Data")



Outline

e An application of MDS in stochastic hydrology
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Set-up of the forward flow simulation

We now focus on numerical simulations taking a parameter field (or map, denoted by
x € E) as input and delivering a functional output:

fixeE—f()eF

Facies Realization Tracer concentration at 108 seconds

1
~ ] B
0.6
+ 0.4
0.2
0

Multiple parameter fields may be candidate to model the subsurface ...

et
—



16 among 1000 facies (multipoints simulations)

Facies realization 052 Facies realization 307 Facies realization 403 Facies realization 428




Corresponding distribution of outputs

Simulations versus time
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How to capture the variability of the output relying on a few runs only?
[m] = = =



Key idea of Scheidt et al.: using degraded simulations

Plume attime t=1 152 000 s Concentration evolution

Facies Realization0000 1 obtained with solver solver solution
0.8
0.6
0.4
- \ ! 02
Permeability Realization00001 obtained with proxy . proxy solution
-
0.4
02
o

If simulating the response precisely for the 1000 maps is a priori too long, doing
rougher (proxy) simulations for all of them may be affordable.

2




Modeling

@ The proxy simulator is denoted by p:

p:xeE—p()eF

@ E is equipped with a (pseudo-)distance:

P (x.y) = / ™ (o) — py (D)

min

@ We call D the n x n matrix of (pseudo-)distances? between the x;’s.



Proxy-based MDS

1000 Proxys
Proxy 1 2D proxy representation
§ s
£s
58
3| .
° o 50 100 150
time (hours)
& Fioxy2 Selection of 50 points
° (Scheidt & Caers)
g5
£
g 8
T

time (hours)

A clustering method allows defining a design of experiments reflecting the diversity of
the n maps, according to the proxy pseudo-distance.



Some references on proxy-based distance methods

C. Scheidt, J. Caers

Representing spatial uncertainty using distances and kernels
Mathematical Geosciences 41 (4), 397-419

C. Scheidt, J. Caers

Uncertainty Quantification in Reservoir Performance Using Distances and Kernel Methods—Application to

a West Africa Deepwater Turbidite Reservoir
SPE Journal 14 (4), 680-692




Outline

o Proxy-based kriging and the ProKSI algorithm
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Inverse problem: identification of geological facies

One measures a response curve
after a fluid injection at a boundary.
A similar curve is then simulated for
the candidate x’s.

Comparing observed and simulated
curves, one gets an idea of which
parameter fields are ’realistic” . . .

Simulations versus time

s Simulations
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Modeling

@ The reference curve is called f

@ The objective function to be minimized is called g:

9(x) = / "™ (1) — f(D)? ot

Trmin

@ Reminder: The candidate maps are noted x; (1 </ < n). Here n = 1000.



Modeling

@ The reference curve is called f

@ The objective function to be minimized is called g:

9(x) = / "™ (1) — f(D)? ot

Trmin

@ Reminder: The candidate maps are noted x; (1 </ < n). Here n = 1000.

Problem: find, in a restricted number of evaluations (each simulation being very time
consuming), as many x;'s as possible with small values of g(x;).



Initial design of experiments

50 proxys 50 Observations

Density

0.0 0.1 02 03 04

An initial design is obtained by using Scheidt and Caers’ approach.



Transformation of the objective function

Histogram of G before transformation Histogram of G after transformation
-~ Chi-Square denstiy R ------ Gaussian denstiy
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Proxy-based kriging

Covariance kernel used

K(x,y) = 0% exp (—% | et~ i t))2dt) P,




Proxy-based kriging

Covariance kernel used

]
Keey)i= o oxp (=g [ (pxt) =~ ply. )l ) +721usy

Why is this kernel an admissible covariance over E x E?

Proposition

Let E and F be two arbitrary spaces. Given a positive (semi-)definite kernel ke on
F x F, the following kernel kg :

ke(x, y) = ke(p(x), P(¥))

is positive (semi-)definite over E x E, whatever the functionp : E — F.




Implementation (transformation apart)

3 Maximum Likelihood Distan'ce
Estimation Matrix
D
Covariance
Parameters
Y Y
m(x;)
Xn | conditioning | Kriging predictions for all $2(x;)
gn data Metamodel candidate models’
1<i<N




Estimation of kriging covariance parameters

—log-likehood/2 versus theta

~log-likehood/2




Validation of the Kriging model

Cross-validation Model on the 6global design
BO=-0.0221 B1=1.039 BO=0.0076 B1= 0.986

Real Values
Real Values

T T T T T T T T T T T T

0.3 0.4 0.5 0.6 0.7 02 03 04 05 06 07 08

Predicted values Predicted values



Expected Improvement in MDS space

(a) MDS principal plane
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Main loop of the ProKSI Algorithm

m(x;)
Xn misfit transformatio% Kriging predictions for aI]i 32(x:)
g and kriging Metamodel candidate models .
metamodel fitting 1<i<N

A

- init

- n 4 no

nen+1 Calculation of Ela for all

remaining candidates

update l
|

EIO, (xi)
X1 =X U Xinia| _misfit calculation Evaluate f for the ‘EIL, maximization 1<i<N
25 = [g;’” g;’n“] and concatenation | candidate x;, ., | X; not yet

evaluated




ProKSI Algorithm: Results based on 100 references

Current min's rank versus iterations
With transformation Without transformation

24
3

50
L

Rank
Rank

1 7 14 22 30 38 46 54 62 70 1 7 14 22 30 38 46 54 62 70
Iterations Iterations

After 43 iterations, the global minimizer was visited in more than 50% of the cases.
The performances are significantly better with transformation.



Number of visited points in the top 30

EI-0

EI-60

Numper
15

Numper

1 7 14 22 30 38 46 54 62 70
Iterations

1 7 14 22 30 38 46 54 62 70
Iterations

In 75 iterations of the (EI-60) strategy developed during B. Rosspopoff’s internship, 25
of the 30 best maps are recovered (in median).
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Conclusion and perspectives

For more detail, see also:

D. G., B. Rosspopoff, G. Pirot, N. Durrande, and P. Renard

Distance-based Kriging relying on proxy simulations for inverse conditioning (2013)
Advances in Water Resources (52), 275-291




Conclusion and perspectives

For more detail, see also:

ﬁ D. G., B. Rosspopoff, G. Pirot, N. Durrande, and P. Renard

Distance-based Kriging relying on proxy simulations for inverse conditioning (2013)
Advances in Water Resources (52), 275-291

A few take home messages

@ Distance methods deserve to be known; they are simple and useful!

@ Distances can be adapted to the problem at hand; versatile methods ... Further
distance methods available (Clustering, non-metric MDS, etc.).

@ Kriging and kriging-based optimization/inversion strategies are applicable in
arbitrary dimensions provided that:

a) A suitable covariance kernel is available (or can be found)
b) The search is limited to a discrete subset of candidate inputs
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