

léthodes d'Analyse Stochastique pour les COdes et Traitements NUMériques

₩×1 Σ 0 Méthodes de distances et métamodèles sur base de proxys pour la planification d'expériences

David Ginsbourger (Univ. Berne)

École de Physique des Houches

10 Avril 2013

Acknowledgements: "ENSEMBLE" project

(D) (A) (A) (A)

Partly based on a paper with high-quality co-authors!

- Bastien Rosspopoff (was at Uni Bern)
- Guillaume Pirot (Uni Neuchâtel)
- Nicolas Durrande (Sheffield)
- Philippe Renard (Uni Neuchâtel)

Motivations of MDS and other distance methods

Given a sample of *n* high-dimensional and/or complicated "objects" x_1, \ldots, x_n (say in a set *E*, e.g. $E \subset \mathbb{R}^p$ with p >> 1), and a "distance" (or *similarity measure*) on *E*, how to summarize this sample using low-dimensional, visualizable, representations?

Motivations of MDS and other distance methods

Given a sample of *n* high-dimensional and/or complicated "objects" x_1, \ldots, x_n (say in a set *E*, e.g. $E \subset \mathbb{R}^p$ with p >> 1), and a "distance" (or *similarity measure*) on *E*, how to summarize this sample using low-dimensional, visualizable, representations?

A few applications of distance methods (dixit Wikipedia!)

- Archeology: grouping items found in different search places into objects from the same period/place/dynasty
- Biology: constructing a phylogenetic tree based on sequences
- Marketing: representing preferences and perceptions of customers
- Geostatistics: diverse appl., e.g. modeling the variability of geological facies...

Motivating geostatistical application

First question: how to select a few "representative ones"?

david.ginsbourger@stat.unibe.ch

Distance-based methods

≣ ► ≣ ৩৭ে 10 Avril 2013 5/38

< ロ > < 同 > < 臣 > < 臣 > -

Motivating geostatistical application

First question: how to select a few "representative ones"?

End motivation: which one(s) correspond(s) best to reality?

david.ginsbourger@stat.unibe.ch

Distance-based methods

10 Avril 2013 5 / 38

・ロト ・回 ト ・ヨト ・ヨト

Outline

Classical multidimensional scaling: background

An application of MDS in stochastic hydrology

Proxy-based kriging and the ProKSI algorithm

Outline

Classical multidimensional scaling: background

Var(E(Y|Xi,Xj),Xk) Var(E(Y|Xi,Xj),Xk) Var(E(Y|Xi,Xj),Xk) Var(E(Y|Xi,Xj),Xk) Var(E(Y|Xi,Xj),Xk) MDS consists in using pairwise distances (or *dissimilarities*) to set up an approximate representation of the x_i 's in a low-dimensional Euclidean space.

Definition

An $(n \times n)$ matrix **D** is called a distance matrix if it is symmetric and

 $d_{i,i} = 0, \quad d_{i,j} \ge 0 \quad i \neq j$

MDS consists in using pairwise distances (or *dissimilarities*) to set up an approximate representation of the x_i 's in a low-dimensional Euclidean space.

Definition

An $(n \times n)$ matrix **D** is called a distance matrix if it is symmetric and

 $d_{i,i} = 0, \quad d_{i,j} \ge 0 \quad i \neq j$

Starting with a distance matrix **D**, MDS aims at finding points u_1, \ldots, u_n of the *k*-dimensional Euclidean space such that the distance matrix with entries $d_{\mathbb{P}^k}(u_i, u_i),$

where $d_{\mathbb{R}^k}$ is the Euclidean distance over \mathbb{R}^k , is close (in some sense) to **D**.

Definition

A distance matrix **D** is called *Euclidean* if \exists points u_1, \ldots, u_n in a Euclidean space \mathbb{R}^k (for some k) whose interpoint distances are given by **D**:

$$d_{i,j}^2 = (u_i - u_j)^T (u_i - u_j)$$

Definition

A distance matrix **D** is called *Euclidean* if \exists points u_1, \ldots, u_n in a Euclidean space \mathbb{R}^k (for some *k*) whose interpoint distances are given by **D**:

$$d_{i,j}^2 = (u_i - u_j)^T (u_i - u_j)$$

Let us set a few notations. A distance matrix **D** being fixed, let A be defined by

$$a_{i,j}=-\frac{1}{2}d_{i,j}^2$$

Furthermore, set

 $\mathbf{B} = \mathbf{H}\mathbf{A}\mathbf{H}$

where $\mathbf{H} = \mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^T$ is the $(n \times n)$ centring matrix.

Theorem

D is Euclidean if and only if B is positive semi-definite (p.s.d.). In particular:

Theorem

D is Euclidean if and only if B is positive semi-definite (p.s.d.). In particular:

a) If D is a matrix of Euclidean interpoint distances for a configuration {u₁,..., u_n} ∈ (ℝ^k)ⁿ, then

$$b_{i,j} = (u_i - \bar{u})^T (u_j - \bar{u})$$

whereof $\mathbf{B} = (\mathbf{HU})(\mathbf{HU})^T \ge 0$.

Theorem

D is Euclidean if and only if B is positive semi-definite (p.s.d.). In particular:

a) If **D** is a matrix of Euclidean interpoint distances for a configuration $\{u_1, \ldots, u_n\} \in (\mathbb{R}^k)^n$, then

$$b_{i,j} = (u_i - \bar{u})^T (u_j - \bar{u})$$

whereof $\mathbf{B} = (\mathbf{HU})(\mathbf{HU})^T \ge 0$.

b) If **B** is p.s.d. of rank *k*, denote v_1, \ldots, v_k its *k* first eigenvectors, normalized by their corresponding eigenvalues $\lambda_1, \ldots, \lambda_k > 0$. Then the points $u_i = (v_{1,i}, \ldots, v_{k,i}) \in \mathbb{R}^k$ $(1 \le i \le n)$ have interdistances given by **D**.

K.V. Mardia, J.T. Kent, and J.M. Bibby

Multivariate Analysis (1979)

david.ginsbourger@stat.unibe.ch

A first example: US Flying Mileage

1.	Atl	Chi	Den	Hou	LA	Mia	NY	SF	Sea	DC
Atl	0	587	1212	701	1936	604	748	2139	2182	543
Chi	587	0 0	920	940	1745	1188	713	1858	1737	597
Den	1212	920	0	879	831	1726	1631	949	1021	1494
Hou	701	940	879	0	1374	968	1420	1645	1891	1220
LA	1936	1745	831	1374	0	2339	2451	347	959	2300
Mia	604	1188	1726	968	2339	0	1092	2594	2734	923
NY/a	748	713	1631	1420	2451	1092	0	2571	2408	205
SF	2139	1858	949	1645	347	2594	2571	0	678	2442
Sea	2182	1737	1021	1891	959	2734	2408	678	0	2329
DC	543	597	1494	1220	2300	923	205	2442	2329	0

イロト イヨト イヨト

A first example: US Flying Mileage

1	Atl	Chi	Den	Hou	LA	Mia	NY	SF	Sea	DC
Atl	0	587	1212	701	1936	604	748	2139	2182	543
Chi	587	0 0	920	940	1745	1188	713	1858	1737	597
Den	1212	920	0	879	831	1726	1631	949	1021	1494
Hou	701	940	879	0	1374	968	1420	1645	1891	1220
LA	1936	1745	831	1374	0	2339	2451	347	959	2300
Mia	604	1188	1726	968	2339	0	1092	2594	2734	923
NY/a	748	713	1631	1420	2451	1092	0	2571	2408	205
SFV	2139	1858	949	1645	347	2594	2571	0	678	2442
Sea	2182	1737	1021	1891	959	2734	2408	678	0	2329
DC	543	597	1494	1220	2300	923	205	2442	2329	0

Can we recover a map of the USA from that distance matrix?

Source: Click here (website in French! :-)

D <- read.csv2("FlyingMileage.csv") S_{11} , S_{12} , M_{12}

david.ginsbourger@stat.unibe.ch

How does it work? A practical algorithm

Given a distance matrix **D** (Euclidean or not), a classical solution to the MDS problem in p dimensions is summarized below:

a) Form **D** construct $\mathbf{A} = \left(-\frac{1}{2}d_{i,j}^2\right)$

b) Obtain **B** with elements $b_{i,j} = a_{i,j} - \bar{a}_{i,.} - \bar{a}_{.,j} + -\bar{a}_{.,.}$

c) Find the *p* largest eigenvalues of **B**, and the corresponding (normalized) eigenvectors v_1, \ldots, v_p .

d) The required points are given by $u_i = (v_{1,i}, \ldots, v_{p,i}) \in \mathbb{R}^p$ $(1 \le i \le n)$

K.V. Mardia, J.T. Kent, and J.M. Bibby

Multivariate Analysis (1979)

A second (historical) example: Ekman's color data

Similarities are based on a rating by 31 subjects. Each pair of colors was rated on a 5-point scale (0 = no similarity up to 4 = identical).

J. de Leeuw, P. Mair

Multidimensional Scaling Using Majorization: SMACOF in R

Journal of Statistical Software (2009)

MDS Eckman Data

plot(smacofSym(D, metric = FALSE), main = "MDS Eckman Data")

Outline

Classical multiclimensional scaling: background

2 An application of MDS in stochastic hydrology

Proxy-based kriging and the ProKSI algorithm

Set-up of the forward flow simulation

We now focus on numerical simulations taking a parameter field (or *map*, denoted by $x \in E$) as input and delivering a functional output:

$$f: x \in E \longrightarrow f_x(\cdot) \in F$$

Facies Realization

Tracer concentration at 10⁶ seconds

Multiple parameter fields may be candidate to model the subsurface ...

david	l ains	hourge	r@stat	unibe ch
adance	- gin io	bounger	Gold	

16 among 1000 facies (multipoints simulations)

The candidate maps are noted x_i ($1 \le i \le n$). Here n = 1000.

david.ginsbourger@stat.unibe.ch

10 Avril 2013 18 / 38

Corresponding distribution of outputs

Simulations versus time

How to capture the variability of the output relying on a few runs only?

・ロト ・回ト ・ヨト ・ヨト

Key idea of Scheidt et al.: using degraded simulations

If simulating the response precisely for the 1000 maps is *a priori* too long, doing rougher (proxy) simulations for all of them may be affordable.

david.ginsbourger@stat.unibe.ch

Distance-based methods

10 Avril 2013 20 / 38

・ロト ・同ト ・ヨト ・ヨ

Modeling

• The proxy simulator is denoted by p:

$$p: x \in E \longrightarrow p_x(\cdot) \in F$$

• *E* is equipped with a (pseudo-)distance:

$$d^{2}(x,y) := \int_{T_{\min}}^{T_{\max}} (p_{x}(t) - p_{y}(t))^{2} dt$$

• We call **D** the $n \times n$ matrix of (pseudo-)distances² between the x_i 's.

Proxy-based MDS

A clustering method allows defining a design of experiments reflecting the diversity of the *n* maps, according to the proxy pseudo-distance.

david.ginsbourger@stat.unibe.ch

Distance-based methods

10 Avril 2013 22 / 38

Some references on proxy-based distance methods

C. Scheidt, J. Caers

Representing spatial uncertainty using distances and kernels Mathematical Geosciences 41 (4), 397-419

C. Scheidt, J. Caers

Uncertainty Quantification in Reservoir Performance Using Distances and Kernel Methods–Application to a West Africa Deepwater Turbidite Reservoir

SPE Journal 14 (4), 680-692

Outline

3

 $\sum_{i_1,\ldots,i_s} \sum_{\substack{P(Y > M) = \int_{M^{i_1} \times P^{i_1}}} e^{i_1 \times P^{i_1}}$

Proxy-based kriging and the ProKSI algorithm

Inverse problem: identification of geological facies

One measures a response curve after a fluid injection at a boundary. A similar curve is then simulated for the candidate *x*'s.

Comparing observed and simulated curves, one gets an idea of which parameter fields are "realistic"...

Modeling

• The reference curve is called fref

• The objective function to be minimized is called g:

$$g(x) := \int_{T_{\min}}^{T_{\max}} \left(f_x(t) - f_{\text{ref}}(t)\right)^2 dt$$

• Reminder: The candidate maps are noted x_i ($1 \le i \le n$). Here n = 1000.

Modeling

• The reference curve is called fref

• The objective function to be minimized is called g:

$$g(x) := \int_{T_{\min}}^{T_{\max}} \left(f_x(t) - f_{\text{ref}}(t)\right)^2 dt$$

• Reminder: The candidate maps are noted x_i ($1 \le i \le n$). Here n = 1000.

Problem: find, in a restricted number of evaluations (each simulation being very time consuming), as many x_i 's as possible with small values of $g(x_i)$.

Initial design of experiments

An initial design is obtained by using Scheidt and Caers' approach.

david o	inchou	raor@	ictat u	niho ch
uaviu.y	Insbou	i yei @	Stat.u	mbe.cn

Transformation of the objective function

david.ginsbourger@stat.unibe.ch

10 Avril 2013 28 / 38

Proxy-based kriging

Covariance kernel used

$$k(x,y) := \sigma^2 \exp\left(-\frac{1}{\theta^2} \int_0^T (\rho(x,t) - \rho(y,t))^2 dt\right) + \tau^2 \mathbf{1}_{x=y}$$

ヘロト ヘヨト ヘヨト

Proxy-based kriging

Covariance kernel used

$$k(x,y) := \sigma^2 \exp\left(-\frac{1}{\theta^2} \int_0^T (p(x,t) - p(y,t))^2 dt\right) + \tau^2 \mathbf{1}_{x=y}$$

Why is this kernel an admissible covariance over $E \times E$?

Proposition

Let E and F be two arbitrary spaces. Given a positive (semi-)definite kernel k_F on $F \times F$, the following kernel k_E :

$$k_E(x,y) := k_F(p(x),p(y))$$

is positive (semi-)definite over $E \times E$, whatever the function $p : E \longrightarrow F$.

Implementation (transformation apart)

(D) (A) (A) (A)

Estimation of kriging covariance parameters

Validation of the Kriging model

ヘロト ヘヨト ヘヨト

Expected Improvement in MDS space

Main loop of the ProKSI Algorithm

ProKSI Algorithm: Results based on 100 references

After 43 iterations, the global minimizer was visited in more than 50% of the cases. The performances are significantly better with transformation.

david.ginsbourger@stat.unibe.d	C	э.	De	ib	n	J	.ι	t.	а	t	s	D	6	1	e	g	r	u	D)(b	s	n	i	g	ł.	ic	v	a	d	
--------------------------------	---	----	----	----	---	---	----	----	---	---	---	---	---	---	---	---	---	---	---	----	---	---	---	---	---	----	----	---	---	---	--

ProKSI Algorithm: Results based on 100 references

In 75 iterations of the (EI-60) strategy developed during B. Rosspopoff's internship, 25 of the 30 best maps are recovered (in median).

david	.gins	bourger	@stat	t.unibe.ch
	9 -		~ ~ ~ ~ ~	

Conclusion and perspectives

For more detail, see also:

D. G., B. Rosspopoff, G. Pirot, N. Durrande, and P. Renard

Distance-based Kriging relying on proxy simulations for inverse conditioning (2013) Advances in Water Resources (52), 275–291

Conclusion and perspectives

For more detail, see also:

D. G., B. Rosspopoff, G. Pirot, N. Durrande, and P. Renard Distance-based Kriging relying on proxy simulations for inverse conditioning (2013) Advances in Water Resources (52), 275–291

A few take home messages

- Distance methods deserve to be known; they are simple and useful!
- Distances can be adapted to the problem at hand; versatile methods ... Further distance methods available (Clustering, non-metric MDS, etc.).
- Kriging and kriging-based optimization/inversion strategies are applicable in arbitrary dimensions provided that:
 - a) A suitable covariance kernel is available (or can be found)
 - b) The search is limited to a discrete subset of candidate inputs

Acknowledgements: "ENSEMBLE" project

http://www.ensemble-modeling.org/