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Where do you think you’re going ? (M. Knopfler, 1979)

In this lecture we will. . .

◮ introduce some “EGO like” (Bayesian optimization)

algorithms for other types of optimization problems,

◮ present some (toy) examples in R and Matlab/Octave
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Where do you think you’re going ? (M. Knopfler, 1979)

In this lecture we will. . .

◮ introduce some “EGO like” (Bayesian optimization)

algorithms for other types of optimization problems,

◮ present some (toy) examples in R and Matlab/Octave

Types of problems that we will consider (if time permits. . . )

◮ deterministic simulators
◮ inequality-constrained problems
◮ multi-objective problems

◮ stochastic simulators
◮ optimization of the mean response
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Disclaimers

◮ This is just the tip of the iceberg. . .
◮ gradients (e.g., with adjoint codes)
◮ “hidden constraints”: handling simulation failures
◮ equality constraints
◮ robust optimization
◮ estimating extreme level sets / probabilities / quantiles
◮ . . .
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◮ This is just the tip of the iceberg. . .
◮ gradients (e.g., with adjoint codes)
◮ “hidden constraints”: handling simulation failures
◮ equality constraints
◮ robust optimization
◮ estimating extreme level sets / probabilities / quantiles
◮ . . .

◮ Very (biased) selective view of the subject. . .
◮ Chosen algo. are available in R or Matlab/Octave packages
◮ I like when things fit in a nice generic framework ,

◮ A (random ?) sample of references is given in each section
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SUR : a generic principle to create new algorithms
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Multi-objective optimization

Noisy optimization
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Recap: Bayesian framework, GP priors/posteriors

prior posterior (n = 4)
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Z ∼ GP (m0, k0) Z | Obsn ∼ GP (mn, kn)

where Obsn = ((x1, Z1), . . . , (xn, Zn))
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Z ∼ GP (m0, k0) Z | Obsn ∼ GP (mn, kn)

where Obsn = ((x1, Z1), . . . , (xn, Zn))

Extends to noisy observation (for Gaussian noise)

In practice: estimation of hyperparam. + validation (e.g., LOO-CV)
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Recap: the Expected Improvement (EI) criterion
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Illustration borrowed from slides by Emmanuel Vazquez, Ecole d’été CEA-EDF-INRIA, July 2017
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Another look at the expected improvement (1/3)

◮ We have denoted the current minimum as

m⋆

n = min
i≤n

Zi .

◮ The improvement at x is defined as

(m⋆

n − Z (x))+ =







0 if Z (x) ≥ m⋆
n

m⋆
n − Z (x) otherwise,
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Another look at the expected improvement (1/3)

◮ We have denoted the current minimum as

m⋆

n = min
i≤n

Zi .

◮ The improvement at x is defined as

(m⋆

n − Z (x))+ =







0 if Z (x) ≥ m⋆
n

m⋆
n − Z (x) otherwise,

◮ If we select a particular x as xn+1, we have Zn+1 = Z (x) and

(m⋆

n − Z (x))+ = m⋆

n − m⋆

n+1.
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Another look at the expected improvement (2/3)

◮ Now set Z ⋆ = minx Z (x) and rewrite (again with xn+1 = x)

(m⋆

n − Z (x))+ = (m⋆

n − Z ⋆) −
(
m⋆

n+1 − Z ⋆
)

(1)
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Another look at the expected improvement (2/3)

◮ Now set Z ⋆ = minx Z (x) and rewrite (again with xn+1 = x)

(m⋆

n − Z (x))+ = (m⋆

n − Z ⋆) −
(
m⋆

n+1 − Z ⋆
)

(1)

◮ Taking the expectation at time n, we get

EIn(x) = En (m⋆

n − Z ⋆) − En

(
m⋆

n+1 − Z ⋆ | xn+1 = x
)
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Another look at the expected improvement (2/3)

◮ Now set Z ⋆ = minx Z (x) and rewrite (again with xn+1 = x)

(m⋆

n − Z (x))+ = (m⋆

n − Z ⋆) −
(
m⋆

n+1 − Z ⋆
)

(1)

◮ Taking the expectation at time n, we get

EIn(x) = En (m⋆

n − Z ⋆)
︸ ︷︷ ︸

call this Hn

− En

(
m⋆

n+1 − Z ⋆ | xn+1 = x
)

◮ Hn ≥ 0 and, when Hn is small, then Z ⋆ ≈ m⋆
n with high proba.

Interpretation

Hn can be seen as a measure of uncertainty about Z ⋆, at time n
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Another look at the expected improvement (2/3)

◮ One last effort. . . recall the law of total expectation:

En (U) = En (En+1 (U)) , for any r.v. U.

◮ We can thus rewrite the EI criterion as

EIn(x) = Hn − En (Hn+1 | xn+1 = x)

Interpretation

◮ The EGO algorithm minimizes greedily, at each step, the

expected uncertainty at the next step.

◮ This is a particular case of a Stepwise Uncertainty

Reduction (SUR) algorithm.
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Stepwise Uncertainty Reduction (SUR)

◮ Assume that you want to estimate a certain QoI
◮ QoI = Quantity of Interest
◮ Example: x⋆ or f (x⋆) in a single-objective optim problem
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Stepwise Uncertainty Reduction (SUR)

◮ Assume that you want to estimate a certain QoI
◮ QoI = Quantity of Interest
◮ Example: x⋆ or f (x⋆) in a single-objective optim problem

◮ Then the SUR approach consists of the following steps

SUR approach

1. Choose a prior: f is seen as a samplepath from a GP Z

2. Choose a “measure of uncertainty” Hn

3. Iterate (possibly after some exploratory initial design)

xn+1 = argminx En (Hn+1 | xn+1 = x)

or, equivalently, xn+1 = argmaxx Hn − En (Hn+1 | xn+1 = x).
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Illustration of the EI criterion (“EGO algorithm”)

Model: GP with Matérn covariance (σ2 = 9, ν = 2, ρ = 0.5)
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Illustration of the EI criterion (“EGO algorithm”)

Model: GP with Matérn covariance (σ2 = 9, ν = 2, ρ = 0.5)
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Illustration of the EI criterion (“EGO algorithm”)

Model: GP with Matérn covariance (σ2 = 9, ν = 2, ρ = 0.5)
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References for the SUR approach

◮ Oldest papers that I know of
◮ Psychophysics: King-Smith (1984), Pelli (1987)
◮ Sequential DoE to estimate “activation thresholds”

◮ References from the nineties
◮ Computer vision: Geman and Jedynak [1996]
◮ Active learning: MacKay [1992], Cohn et al. [1996]

◮ More recent works, dealing with GP models
◮ IAGO: Villemonteix [2008], Villemonteix et al. [2009]
◮ Reliability: Picheny et al. [2010], Bect et al. [2012],

Chevalier et al. [2014]
◮ A little bit of theory: Bect et al. [2017]
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SUR : a generic principle to create new algorithms

Inequality-constrained problems

Multi-objective optimization

Noisy optimization

References
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Inequality-constrained problems

◮ Consider a single-objective, inequality-contrained problem:
◮ minimize f (x)
◮ under the constraints x ∈ X and gj(x) ≤ 0, 1 ≤ j ≤ q

◮ where
◮ X is a nice, known compact subset of Rd (e.g., X = [0; 1]d)
◮ f , g1, . . . , gq : X → R

◮ both f and the gj ’s are expensive to evaluate
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Inequality-constrained problems

◮ Consider a single-objective, inequality-contrained problem:
◮ minimize f (x)
◮ under the constraints x ∈ X and gj(x) ≤ 0, 1 ≤ j ≤ q

◮ where
◮ X is a nice, known compact subset of Rd (e.g., X = [0; 1]d)
◮ f , g1, . . . , gq : X → R

◮ both f and the gj ’s are expensive to evaluate

◮ Important: now there are several “unknown” functions !
◮ We will need to use q + 1 GP models
◮ Usually assumed independent ⇒ not really harder than one GP
◮ Notations: f 7→ Zo and gj 7→ Zc,j , 1 ≤ j ≤ q
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Measure of uncertainty ?

◮ Recall the measure of uncertainty used in the EI case:

Hn = En (m⋆

n − Z ⋆)

◮ How do we adapt this to inequality contraints ?
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Measure of uncertainty ?

◮ Recall the measure of uncertainty used in the EI case:

Hn = En (m⋆

n − Z ⋆)

◮ How do we adapt this to inequality contraints ?

◮ Assume that at least one feasible solution is known

◮ Then the same Hn can be used, with

m⋆

n = {Zo(xi) | i ≤ n s.t. ∀j ≤ q, Zc,j(xi) ≤ 0}

Z ⋆ = {Zo(x) | x ∈ X s.t. ∀j ≤ q, Zc,j(x) ≤ 0}
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Sampling criterion

◮ The corresponding “expected improvement” (to be maximized) is

EFIn(x) = Hn − En (Hn+1 | xn+1 = x)

= En

(

(m⋆

n − Zo(x))+
︸ ︷︷ ︸

improvement

· 1∀j≤q, Zc,j (x)≤0
︸ ︷︷ ︸

feasibility

)

◮ EFI = Expected Feasible Improvement (cf. DiceOptim)
◮ WARNING: there is another Skywalker SUR crit. in DiceOptim
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Sampling criterion

◮ The corresponding “expected improvement” (to be maximized) is

EFIn(x) = Hn − En (Hn+1 | xn+1 = x)

= En

(

(m⋆

n − Zo(x))+
︸ ︷︷ ︸

improvement

· 1∀j≤q, Zc,j (x)≤0
︸ ︷︷ ︸

feasibility

)

◮ EFI = Expected Feasible Improvement (cf. DiceOptim)
◮ WARNING: there is another Skywalker SUR crit. in DiceOptim

◮ Assuming independent GPs, this simplifies to

EFIn(x) = En

(

(m⋆

n − Zo(x))+

)

︸ ︷︷ ︸

≈ the “usual” EI

· Πq
j=1 Pn (Zc,j(x) ≤ 0)
︸ ︷︷ ︸

probability of feasibility

.
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Example

DiceOptim demo (easyEGO.cst)

. . . single-objective optimization

with q = 2 inequality constraints . . .
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References

◮ Original work by M. Schonlau and co-authors
◮ Schonlau et al. [1998]
◮ see also Schonlau’s PhD thesis

◮ Other approaches, extension, comparisons. . .
◮ Sasena [2002], Sasena et al. [2002]
◮ Parr [2013], Parr et al. [2012]
◮ PESC: Gelbart [2015], Hernández-Lobato et al. [2015]
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◮ fj : X → R, 1 ≤ j ≤ p

Pareto domination relation

z ≺ z ′ if (def)







zj ≤ z ′
j for all j ≤ p,

zj < z ′
j for at least one j ≤ p.

◮ The “quantities of interest” here are
◮ the Pareto set P = {x ∈ X :6 ∃x ′ ∈ X, f (x ′) ≺ f (x)}

(a.k.a. set of Pareto-efficient solutions)
◮ and/or the Pareto front {z ∈ R

p : ∃x ∈ P, z = f (x)}

(a.k.a Pareto frontier, Pareto boundary. . . )
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◮ GP models Z1, . . . , Zp for f1, . . . , fp

◮ EHVI: a natural extension of EI to multi-objective problems

R⋆

f1

f2

z1

z2

z3

z ref
B = Πp

j=1

]
−∞; z

ref
j

]
: bounding box

Maximal dominated region for Z :

R
⋆ = {z ∈ B, ∃x ∈ X, Z(x) � z}

Current dominated region:

Rn = {z ∈ B, ∃i ≤ n, Z(xi ) � z}

Measure of uncertainty:

Hn = En (volp (R⋆ \ Rn))

EHVIn(x) = En ( volp (Rn+1 \ Rn) | xn+1 = x)
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Multi-objective problems

◮ Implementation
◮ Exactly computable for independent GP priors, 2 ≤ p . 5
◮ Implemented in GPareto (R), STK (Matlab/Octave). . .
◮ Dependent priors, larger p: Monte Carlo approx.

STK demo

. . . bi-objective optimization with the EHVI criterion . . .

code by Etienne Leloup, Guillaume Maistre-Bazin, Lucain Pouget

CentraleSupelec final year project for CEA DIF
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◮ Wagner et al. [2010]

◮ Fast computation of the EHVI criterion
◮ Emmerich and Klinkenberg [2008]
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◮ Extensions & other approaches (far from exhaustive)
◮ Constraints: Feliot et al. [2017]
◮ ParEGO: Knowles [2006]
◮ A different SUR: Picheny [2014b]
◮ . . . more refs in Feliot et al. [2017], section 2.2
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Stochastic simulators in a nutshell

x

RNG

code S = ϕ(x , U)

◮ Inside the box
◮ A random vector U is generated during the simulation
◮ Remark: most of the time, U is not directly accessible

◮ From the outside
◮ The response S (assumed scalar here) is a random variable
◮ The distribution of S depends on x
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Example: the MORET code (IRSN)

◮ MORET simulates neutron transport in fissile materials

◮ Output = effective multiplication factor (k-eff)

◮ Uses Monte Carlo methods ⇒ “noisy” estimate of k-eff

Source: MORET website, somewhere on the internet (sorry, no WIFI in my room last night. . . )
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◮ Assume that we want to “minimize the output” S. . .
◮ what does that even mean for a stochastic simulator ???
◮ Recall: the output S is a random variable

◮ Let πS
x denote the pdf of S at the input point x ∈ X

The simplest formulation that makes sense (?)

In the following we want to minimize the expected response:

Find x ∈ X such that f (x) =
∫

s π
S
x (s) ds is minimal

◮ Many other formulations are possible. . .
◮ quantiles, mean/variance, probability constraints, etc.
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“Meta-models” (priors) for stochastic simulators ?

◮ In general GP models can can no longer do the job. . .
◮ at each x ∈ X we now have a pdf !

◮ Simplifying assumption: πS
x ≈ N

(
f (x), σ2)

◮ In this case a GP model Z for f can be used
◮ The posterior distribution is still a GP

◮ This is equivalent to assuming “noisy measurements” of f

Si = f (xi) + εi , εi
iid
∼ N (0, σ

2)
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Illustration: GP model with noisy observations

Kriging prediction based on noisy observations

-1 -0.5 0 0.5 1
input variable x

-4

-3

-2

-1

0

1

2

3

4

5

re
sp

on
se

 z

True function
Observations
Posterior mean
95% credible interval

mini≤n Si is no longer a reasonable estimate of minx Z (x) here !
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The AKG criterion

◮ Recall (again) the measure of uncertainty used in the EI case:

Hn = En (m⋆

n − Z ⋆)

◮ Here the same Hn can be used (again !) with

m⋆

n = min
x

mn(x) = min
x

En (Z (x))

Knowledge gradient criterion

KGn(x) = m⋆

n − E
(
m⋆

n+1 | xn+1 = x
)

◮ AKG: approximate min over X by min over {x1, . . . , xn, x}.
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Example

STK demo (stk_example_doe05)

. . . noisy optimization in 1D . . .

For R users: AKG and other noisy optimization sampling criteria

also available in DiceOptim ,
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Relaxing the assumptions on the simulator

◮ Recall our simplifying assumption: πS
x ≈ N

(
f (x), σ2)

◮ What if this assumption is too strong for me ?

◮ σ2 depends on x ?
◮ still manageable using heteroscedastic GP models

◮ Unknown (non-Gaussian) output distribution ?
◮ topic of current research !

◮ “batch trick”: if S1, . . . , Sm
iid
∼ πS

x , then by the CLT

1
m

m∑

i=1

Si
approx

∼ N

(

f (x),
σ2

m

)
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Thank you for your attention ,

Everything is in the title
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