First elements of exploration for the GR3D model (in development !) "Global Repositioning Dynamics for Diadromous fish Distribution"

T.Rougier (<u>thibaud.rougier@irstea.fr</u>), P.Lambert, E. Rochard

www.irstea.fr

Context

- **1.1** Climate change and existing approaches
- 1.2 Call for new models
- **1.3** Interest for the management policies

2. The GR3D model

- 2.1 What it is and what it is not
- 2.2 Components of GR3D
- **2.3** The key process: the repositioning process

3. The next step: performing a sensitivity analysis ! → HELP !!!

1. Context

1.1 Climate change and existing approaches

Beginning of my PhD in October 2010 :

« Processes based approach of the repositioning of diadromous fish under the influence of climate change »

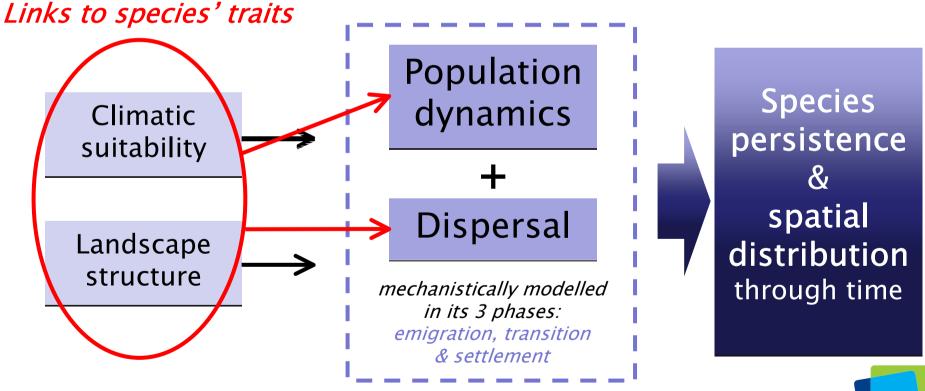
- Environnemental context of Climate Change
 - Threat for species and biodiversity → need to develop approaches to assess the potential impact of climate change

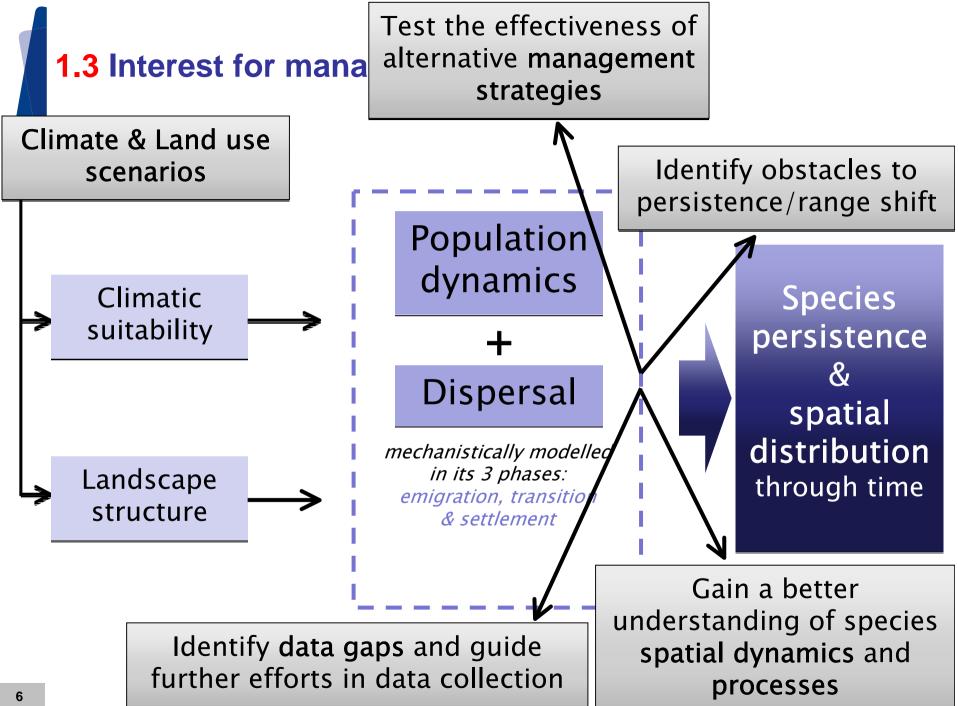
- Scientific context
 - Many studies using empirical and statistical models have forecasted the possible impact of climate change on species distribution for many taxa such as plants (*Midgley et al., 2002 ; Thuiller, 2003, Zimmermann et al., 2009*), reptiles and amphibians (Segurado et Araujo, 2004 ; Araujo et al., 2006), birds (*Huntley et al., 2008*), mammals (*Thuiller et al., 2006*), insects (*Heikkinen et al., 2007, Barrows et al., 2008*), fish (*Buisson, 2009*) and diadromous fish (*Lassalle, 2008*)

1. Context 1.2 Call for new models

Dut		Ecology Letters, (2005) 8: 993-100	09 doi: 10.1111/j.1461-0248.2005.00792.x	
	REVIEWS AND SYNTHESES	Predicting species di simple habitat mode	Ecography 33: 621-626, 2010 doi: 10.1111/j.1600-0587.2009.06023.x © 2010 The Authors. Journal compilation © 2010 Ecography Subject Editor: Jane Elith. Accepted 19 October 2009	
	Antoine Guisan ^{1*} and Wilfried Thuiller ^{2,3}	Abstract In the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially		
			Beyond bioclimatic envelopes: abundance modelling in the cor	
Diversity a	nd Distributions. (Diversity Distrib.) (2010)	16 . 321–330	Brian Huntley, Phoebe Barnard, Res Altwegg Lesley Gibson Philip A P. Hockey, David G.	, Lynda Chambers, Bernard W. T. Coetzee, . Hole, Guy F. Midgley, Les G. Underhill and
Diversity a		loving beyond stat	ic species distribution	, Lynda Chambers, Bernard W. T. Coetzee, . Hole, Guy F. Midgley, Les G. Underhill and
Diversity a	BIODIVERSITY N VIEWPOINT M		ic species distribution	, Lynda Chambers, Bernard W. T. Coetzee, . Hole, Guy F. Midgley, Les G. Underhill and
Diversity a	BIODIVERSITY VIEWPOINT M bi	loving beyond stat nodels in support o iogeography net Franklin	ic species distribution	Iimate change: coupling
Diversity a	BIODIVERSITY VIEWPOINT M bi	loving beyond stat nodels in support o iogeography net Franklin Franklin Franklin Franklin	ic species distribution f conservation Predicting extinction risks under c	Iimate change: coupling dynamic bioclimatic habitat

Predicting global change impacts on plant species' distributions: Future challenges


Wilfried Thuiller^{a,*}, Cécile Albert^{a,1}, Miguel B. Araújo^{b,1}, Pam M. Berry^{c,1}, Mar Cabeza^{d,1}, Antoine Guisan^{e,1}, Thomas Hickler^{f,1}, Guy F. Midgley^{g,1}, James Paterson^{c,1}, Frank M. Schurr^{h,1}, Martin T. Sykes^{f,1}, Niklaus E. Zimmermann^{i,1}


ELSEV

There is a call for a next generation of « fully integrated » dynamic models (Huntley et al. 2010) those could combine:

- Details vs Generalisation
- What type of movement / dispersal model?
- Variability between individuals, populations & across the species' range
- Evolutionary response to environmental changes
- Spatio temporal scales
- Data availability

Model

2. The GR3D model2.1 What it is

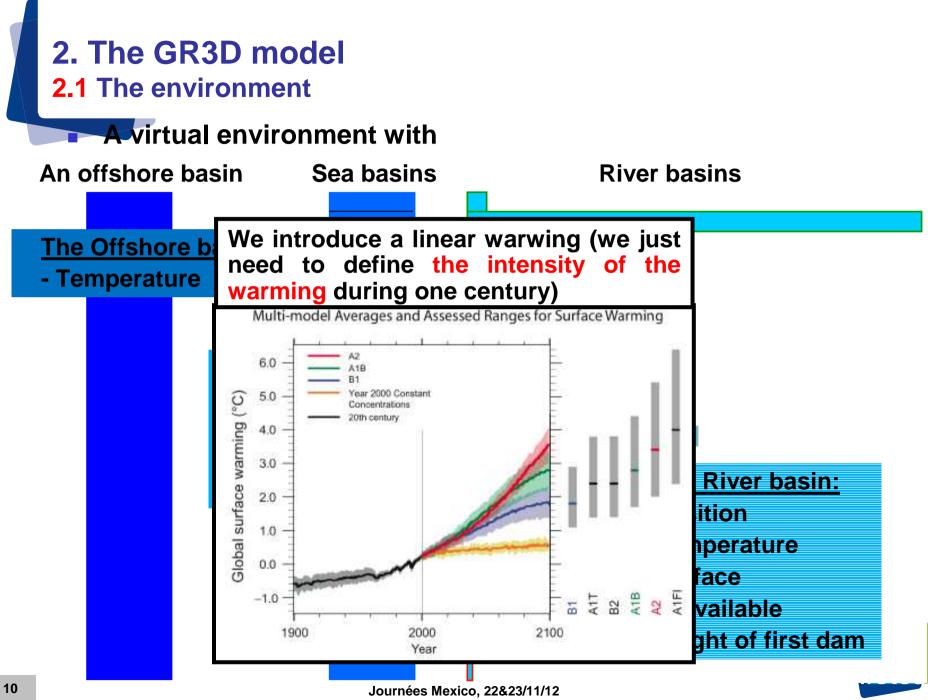
Under DEVELOPMENT

- Individual-based, spatially explicit and stochastic model
- Use of the SimAquaLife framework (Dumoulin, 2007)
- Designed to potentially work on several species (included virtual species) and switch easily from a species to another → exploitation of a life history traits database of European diadromous fish (TraitDiad 1.0)
 - First application with a shad-like species
- a <u>virtual environment</u>... Not definitive but at least in the first exploration phase...

2. The GR3D model

2.2 Components of GR3D – Biological processes

In each biological process, the <u>key inputs</u> are <u>life history</u> traits


For example:

- size at maturity
- age of first reproduction
- reproduction season
- duration of the marine phase
- duration of the continental phase
- → If we have the information for each of the 29 diadromous species present at the European scale, it will be relatively easy to switch from a virtual species to another...

A data base is in construction...

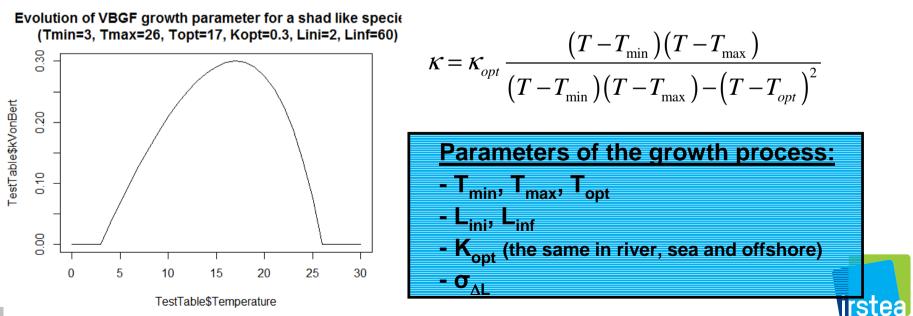
2. The GR3D model2.1 What it is

Under DEVELOPMENT

- Individual-based, spatially explicit and stochastic model
- Use of the SimAquaLife framework (Dumoulin, 2007)
- Designed to potentially work on several species (included virtual species) and switch easily from a species to another → exploitation of a life history traits database of European diadromous fish
- a <u>virtual environment</u>... Not definitive but at least in the first exploration phase...
- Aims to integrate <u>population dynamics</u>, <u>repositioning behaviours</u> and <u>habitat/climatic requirements</u> to investigate the <u>diadromous</u> fish-like responses to environmental changes
 - Which factors influence the repositioning ?

2. The GR3D model2.1 What it is NOT

- GR3D <u>does not</u> incorporate evolutionary (genetic) response of individuals to climate change. We consider only a phenotic plasticity of individuals.
 - Very few elements in literature about evolutionary response of diadromous fish...
- Precipitations <u>are not</u> included in GR3D
 - Models linking Climate Change to river discharge do not exist everywhere
 - River flows are very sensitive to agriculture (irrigation), dams (mill pond)... link between Global Change and river discharge is also a challenge
 - How do the flow play on every species ?... Link between flow and biological processes.
- GR3D is not a pluri-specific model


2. The GR3D model2.2 Components of GR3D – Growth process

Growth process (Fabens, 1965; Mallet et al., 1999; Dion & Hughes, 2004; Bal et al., 2011)

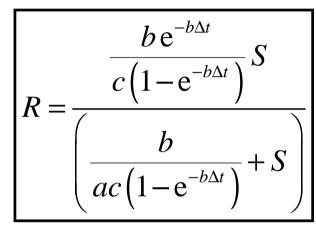
 Von Bertalanffy growth function with a seasonal variability of the growth increment

$$\Delta L = LogN(\mu_{\Delta L}, \sigma_{\Delta L})$$
$$\mu_{\Delta L} = \log\left((L_{\infty} - L_{t}) \times (1 - \exp^{-\kappa \Delta t})\right) - \frac{\sigma_{\Delta L}^{2}}{2}$$

• A growth rate parameter linked to the temperature

Journees Mexico, 22&23/11/12

2. The GR3D model


2.2 Components of GR3D – Reproduction process

- <u>Reproduction process</u> modelled with a stock recruitment relationship (Beverton & Holt, 1957; Myers et al., 1995; Lierman & Hilborn 1997)
 - A stock recruitment relationship follows the evolution of the initial recruitment (r₀) produced by a spawner stock (S) until a given stage of development (R)
 - We assumed that the initial recruitment (r₀) is directly proportional to the spawner stock level according to the fecundity of the species (parameter a):
 - Then we assumed 2 kinds of mortality of the initial recruitment:
 - a non density dependent mortality with temperature (parameter b)
 - a density dependant mortality according to the surface of the reproduction basin as it is a proxy of the available ressources (parameter c)

$$\mathbf{S} \xrightarrow{r_0} = aS \xrightarrow{r_0} \frac{dr}{dt} = -(\mathbf{b} + \mathbf{c}r)r$$

2. The GR3D model 2.2 Components of GR3D – Reproduction process

Equation of the reproduction process:

with
$$b = -\frac{1}{\Delta t} \ln \left[surv_{opt} \frac{(T - T_{min})(T - T_{max})}{(T - T_{min})(T - T_{max}) - (T - T_{opt})^2} \right]$$

and $c = \frac{\lambda}{surf_{acc}}$

Calibration:

- For shad like species, we use data about allis shad population dynamics in the Gironde basin (Rougier et al., 2012)

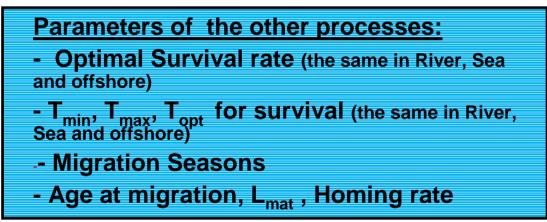
- For the other species, we will probably use assumptions

Parameters of the reproduction process: - Reproduction Season

- T_{min}, T_{max}, T_{opt} for reproduction process

- number of female eggs per kg of female to compute a

- Delay between eggs and recruitment (∆t), optimal larvae survival rate (surv_{opt}), T_{min},


T_{max}, T_{opt} to compute b

- λ to compute c

2. The GR3D model

2.2 Components of GR3D – Biological processes

- Other simple processes
 - Age process
 - Survival process with survival equation
 - Migration processes: in sea, in offshore and in river

• And the key process of GR3D:

THE REPOSITIONNING PROCCESS

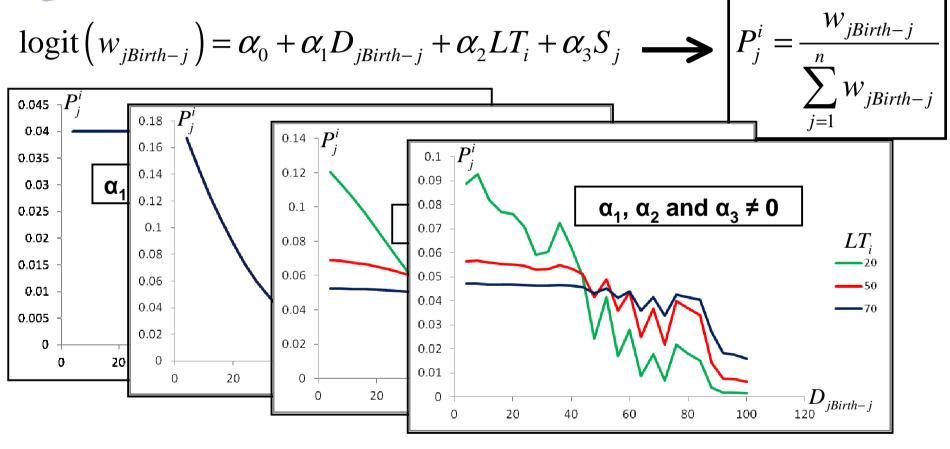
- What do we mean by repositioning of diadromous fish ?
- → The process by which the species will maybe explore new environment and <u>change its distribution area</u> (~ dispersal...)
 - For anadromous:
 - → The choice of the reproduction basin (Homing vs. Straying)
 - For Catadromous
 - → The choice of the "feeding" basin
- → For each species, it is about the choice of a basin... It is the modelling challenge! Because...
 - We know nothing...
 - Nothing relevant in literature...

- How do we model it ?
- → We designed a process allowing the test of different scenarios
- The choice of a basin might depend on:
 - The size of the fish (swim capacity \rightarrow migration distance max)

min/birthBasin

d_{i-birthBasin,}

surfMax surf.

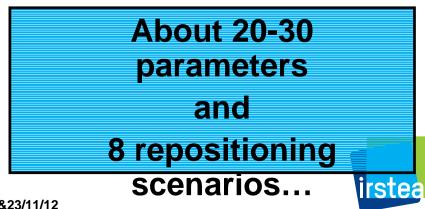

irste

 The distance between the basin and the birth place of the fish

- The density of fish in the basin
- We can test a multitude¹² of scenarios

Equation of the repositioning process

Number of repositioning scenario: - 2³ = 8 scenarios


What is the interest to test different scenarios ?

- Each repositioning scenario can be relevant for one or more species
- Each repositioning scenario is in fact associated with life history traits
- We may identify the best repositioning scenarios and so the species with the most effective repositioning

3. The next step: performing a global sensitivity analysis3.1 Definition of input factors (and their modalities)

- Climate change:
 - warming' intensity
- Population dynamics
 - Reproduction:
 - a, b, c, T_{min}, T_{opt}, T_{max}
 - Growth:
 - Growth rate, Linf, T_{min}, T_{opt}, T_{max}
 - Survive:
 - Mortality rate Sea, River, offshore, T_{min}, T_{opt}, T_{max}
 - Migrations:
 - Ages at migration, L_{mat...}
 - Homing
 - Homing rate
- Repositioning process:
 - 8 different scenarios

Journées Mexico, 22&23/11/12

3. The next step: performing a global sensitivity analysis 3.2 Choice of response variables to be considered Questions:

- Which repositioning scenario give the best results in terms of species persistence and repositioning efficiency ?
- Which influence of the climate change on species persistence ?
- Is there some species traits which have a great effect on the simulation results ?

3. The next step: performing a global sensitivity analysis 3.2 Choice of response variables to be considered

- Output candidates to estimate species persistence and repositioning efficiency
 - Abundance
 - Total number of individuals
 - Distribution area
 - Number of basins with a population (i.e. with reproduction)
 - Distribution area modifications
 - Localization of the most northern basin
 - Localization of the most southern basin
 - Distance between the most northern and southern basins
 - Number of basins with extinction between the start and the end of the simulation
 - Number of basins with colonization between the start and the end of the simulation

3. The next step: performing a sensitivity analysis 3.3 Simulation design and statistical model to applied ???

- Actually, we start thinking about this step...
- Need to determine the modalities of the input factor
- Group screening and pls ? (Drouineau et al., 2006; Lehuta et al., 2010)

- Change the environment... A real landscape based on CCM ?!
- Work with a grey mullet-like (case of a catadromous species)

Thanks for your attention !...

Questions?

2. Le modèle G3D

2.3 les processus de G3D (Process overview and scheduling in Grimm et al., 2006)

\rightarrow le processus biologique de reproduction

A stock recruitment relationship follows the evolution of the initial recruitment (*r0*) produced by a spawner stock (*S*) until a certain stage of development (*R*)

 We assumed that the initial recruitment (*r0*) is directly proportional to the spawner stock level according to the fecundity of the species (*a*):

$$r_0 = aS$$

We assumed that the mortality of the initial recruitment (*r0*) depends on the temperature through a parameter *b*, and on the density of the recruitment (intraspecific competition) through a parameter *c* directly linked to *r*. So, the variation of the initial recruitment is

$$\frac{dr}{dt} = -(b+cr)r$$

• The solution integrating between t = 0 where r = r0 = aS, and $t = \Delta t$ where r = R is

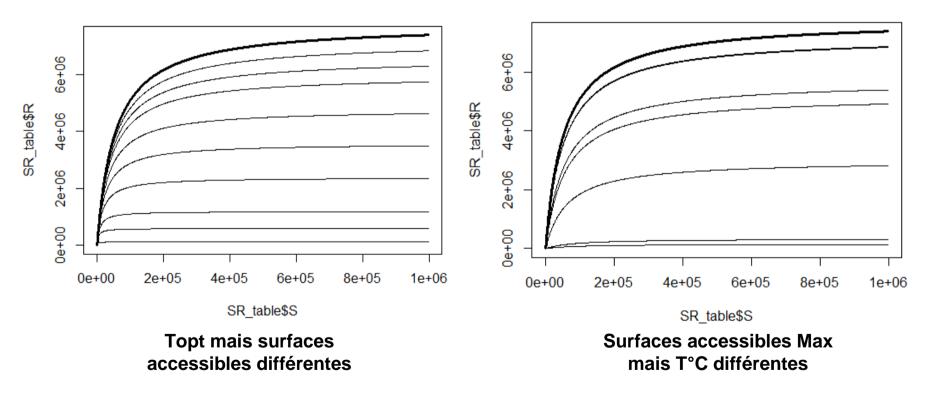
$$R = \frac{\frac{b e^{-b\Delta t}}{c(1 - e^{-b\Delta t})}S}{\left(\frac{b}{ac(1 - e^{-b\Delta t})} + S\right)}$$

Journées Mexico, 22&23/11/12

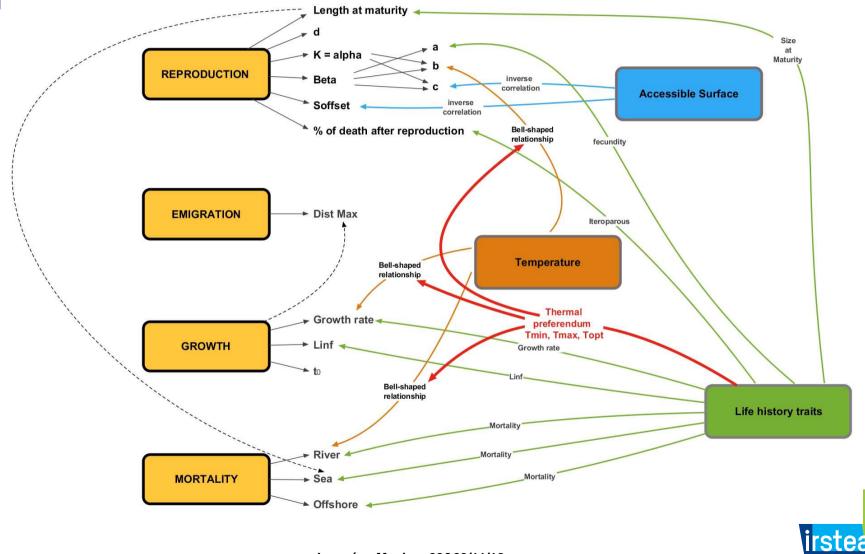
2. Le modèle G3D 2.3 les processus de G3D (Process overview and scheduling in Grimm et al., 2006) → le processus biologique de reproduction

Assuming that

$$\alpha = \frac{b e^{-b\Delta t}}{c \left(1 - e^{-b\Delta t}\right)} \qquad \beta = \frac{b}{ac \left(1 - e^{-b\Delta t}\right)}$$


 we recognize the formulation of the Beverton & Holt SR relationship proposed by Lierman and Hilborn (1997)

$$R = \frac{\alpha S}{\beta + S}$$


2. Le modèle G3D 2.3 les processus de G3D (Process overview and scheduling in Grimm et al., 2006) → le processus biologique de reproduction

Quelques courbes SR

2. Le modèle G3D2.3 La carté récapitulative du modèle actuel

