Can we robustly reach goals fixed on simple indicators ?

Study Sites and Goals

Determine the consequences of various management measures, either direct or indirect, on flatfish populations and activities in the Eastern Channel.

The ISIS-Fish model

Superimposition of 3 sub-models that interact in time and space.

zone

A complex model :

- No analytical solution
- Possible overparameterization
- High number of uncertain input variables

\rightarrow How to deal with uncertainties ?

zone

Decision Theory

	Probability	η_1	η_2	• • •	η_n
Probability	Manager Nature	F_1	F_2		F_n
ξ1	$\mathfrak{D}_1 = d(x)_1$				
ξ_2	\mathfrak{D}_2		$K^{2,2}_{1:l}(F_2,\mathfrak{D}_2), ho^{2,2}_{1:l}$		
8	E		÷		:
ξ_m	\mathfrak{D}_m				$K_{1:p}^{n,m}(F_2,\mathfrak{D}_2),\rho_{1:p}^{n,m}$

Table 1: Usual application of Decision Theory (mixed strategies and Bayesian framework)

Manager	F_1	F_2	•••	F_n
$ \begin{array}{c} \mathfrak{D}_1 = d(x)_1 \\ \mathfrak{D}_2 \end{array} $		$K(F_2,\mathfrak{D}_2)$		
E		÷		Ë
\mathfrak{D}_m				$K(F_n,\mathfrak{D}_m)$

Table 2: Decision theory with no a-priori information (pure strategies)

Info-Gap

Input variables that cannot be impacted by managem<u>ent</u> measures (u)

Uncertainty Model

Decision scenario

System Model

+ Performance Criterion

Input variables that can be impacted by management measures (q) Model output variables (R(q,u)) associated to given thresholds (r_c)

Info-Gap

The robustness function ($\hat{\alpha}(q, r_c)$) is the greatest horizon of uncertainty a that can be tolerated while being sure that the reward function did not cross r_c:

$$\hat{\alpha}(q, u, r_c) = \max\left\{\alpha : \left(\min_{r \in U(\alpha, \tilde{r})} R(q, u)\right) \ge r_c\right\}$$

ũ is the nominal value of our model parameters.

Looking for the gap...

Reducing the number of runs

1: Identification of important parameters

 \rightarrow Parameters not impacting the output variable are removed

2: Optimisation of the exploration techniques

 \rightarrow The input space has to be explored as uniformly and thoroughly as possible in as few simulations as possible.

3: Reduction of domains of variation

 \rightarrow It is not needed to explore parameter values that cannot occur in this ecosystem.

The need for sensitivity analysis

Sensitivity analysis has two main assets:

- It is associated with powerful tools to explore spaces (Saltelli et al. 1999, 2000 and 2004)

- It provides efficient statistical methods to evaluate the variation of the outputs conditional on the inputs.

 \rightarrow Which method should we use ?

Which Method should we use ?

Applying LHS to our model

77 input parameters:

Category	Nb of parameters
Gears	15
Metiers	15
Fish Biology	41
Management	6

5000 simulations

16 output variables:

Parameter	Abbreviation				
Catchability	Q				
Mean Weight	MW				
Maturity Ogive	MO				
Recruitment	RE				
Natural Death Rate	NDR				
Growth Rate	K				
Asymptotic Length	Linf				
Time at the Origin	T0				
Price	Р				
Reproduction Rate	RR				
Selectivity Beam Trawl	SBT				
Selectivity Net	SN				
Selectivity Other Gears	SO				
Target Factor Beaming	TFB				
Target Factor Netting	TFN				
Target Factor Other Metiers	TFO				
ICES subarea 7D	7D				
ICES subarea 7E	7E				
Total Allowable Catch	TAC				
Minimum Landing Size	MinSize				

Table 3: Parameter Names and Abbreviations

- 4 types: Biomass, Spawning Biomass, Fishing Mortality, Catch
- 4 populations: Sole7D, Plaice7D, Sole7E, Plaice7E

Sensitivity analysis results

Biomass			Spawning Biomass				Fishing Mortality				Catch				
Recruitment			Catchability			Catchability			Mean Weight						
Mean Weight		Maturity Ogive			Target Factor Other Metiers			Recruitment							
Catchability		Mean Weight							Na	tural D	eath R	ate			
Target	Target Factor Other Metiers		Recruitment												
Natural Death Rate		Natural Death Rate													
		Target Factor Other Metiers							,						
S7D	P7D	S7E	P7E	S7D	P7D	S7E	P7E	S7D	P7D	S7E	P7E	S7D	P7D	S7E	P7E
SO	alpha			SO	alpha			SO	alpha	SO	SO				· · · · ·
SN	10620			SN				SN							
TFB				TFB		TFB	TFB	TFB		TFB	TFB				
SBT				TFN				TFN							
				SBT		SBT	SBT		SBT	SBT	SBT				

Table 4: Input parameters most impacting output variables, sorted from the most impacting to the less impacting

We keep 25 parameters for the info-gap analysis:

Parameter	Occurences	Parameter	Occurences
Target factor	2	Mean Weight	4
TAC	3	Natural Death Rate	4
Catchability	4	Recruitment	4
Maturity	4	Total	25

Criticisms of the info-gap method

It is not new, but based on:

- Maximin (or Minimax) theories
- Game theory
- Stability radius theories

It is inherently local, and therefore not fit for cases of severe (true) uncertainty

Sniedovich 2010, 2011, 2012

Info-gap (Ben-Haim, 2001, 2006)

Minimax (Wald 1939, 1945, 1950; Hurwicz 1950, 1951a,b; Savage, 1951; Sniedovich 2010, 2011)

Game Theory (Von Neumann & Morgenstern, 1944)

Info-gap + ISIS-Fish

40 points cloud, criterion: SSBS7D>8000t

Info-gap + ISIS-Fish

Info-gap + ISIS-Fish

Conclusion

Sensitivity analysis had a major role to play in the reduction of the number of simulations to be performed in our approach.

Lack of impact of management measures, strongly environmentallydriven ecosystem \rightarrow Need to test other management measures.

The weight of the « Other Metiers » groups calls for improvements in our model.

Some uncertainty can remain at the boundaries of the subspaces identified as « safe » (number of points per cloud).

Need to test the method on other cases, with a higher influence of management to determine its usefulness.

Conclusion

Taking into account our current knowledge of the ecosystem's state, goals defined by the ICES for the 4 populations cannot be reached.

We used the most standard indicators set up for fisheries management.

It is rather straightforward how input parameters influence values of the output variables.

But it is much harder to determine which input parameter values are desirable, relative to fixed goals in the indicators values.

Can we deal with more complex indicators ?

Thanks for your attention !